
Steve Lacroix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7554948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Live imaging of platelets and neutrophils during antibody-mediated neurovascular thrombosis. Blood Advances, 2022, , .	5.2	1
2	Shedding a new light on Huntington's disease: how blood can both propagate and ameliorate disease pathology. Molecular Psychiatry, 2021, 26, 5441-5463.	7.9	16
3	Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. Journal of Neuroscience, 2020, 40, 9103-9120.	3.6	23
4	FcÎ ³ RIIA expression accelerates nephritis and increases platelet activation in systemic lupus erythematosus. Blood, 2020, 136, 2933-2945.	1.4	25
5	Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. Journal of Experimental Medicine, 2020, 217, .	8.5	61
6	Evidence for the spread of human-derived mutant huntingtin protein in mice and non-human primates. Neurobiology of Disease, 2020, 141, 104941.	4.4	11
7	Use of adeno-associated virus-mediated delivery of mutant huntingtin to study the spreading capacity of the protein in mice and non-human primates. Neurobiology of Disease, 2020, 141, 104951.	4.4	12
8	Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications, 2019, 10, 518.	12.8	372
9	Differential attenuation of β2 integrin–dependent and –independent neutrophil migration by Ly6G ligation. Blood Advances, 2019, 3, 256-267.	5.2	16
10	Portrait of blood-derived extracellular vesicles in patients with Parkinson's disease. Neurobiology of Disease, 2019, 124, 163-175.	4.4	33
11	Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1550-E1559.	7.1	164
12	IL-1β enables CNS access to CCR2 ^{hi} monocytes and the generation of pathogenic cells through GM-CSF released by CNS endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1194-E1203.	7.1	75
13	FoxJ1 regulates spinal cord development and is required for the maintenance of spinal cord stem cell potential. Experimental Cell Research, 2018, 368, 84-100.	2.6	26
14	Ly6C ^{high} monocytes facilitate transport of Murid herpesvirus 68 into inflamed joints of arthritic mice. European Journal of Immunology, 2018, 48, 250-257.	2.9	6
15	Betacellulin regulates schwann cell proliferation and myelin formation in the injured mouse peripheral nerve. Glia, 2017, 65, 657-669.	4.9	13
16	Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain, Behavior, and Immunity, 2017, 62, 1-8.	4.1	41
17	Megakaryocytes compensate for Kit insufficiency in murine arthritis. Journal of Clinical Investigation, 2017, 127, 1714-1724.	8.2	32
18	Myeloid cell transmigration across the CNS vasculature triggers IL-1β–driven neuroinflammation during autoimmune encephalomyelitis in mice. Journal of Experimental Medicine, 2016, 213, 929-949	8.5	126

STEVE LACROIX

#	Article	IF	CITATIONS
19	Cerebrovascular and blood–brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Annals of Neurology, 2015, 78, 160-177.	5.3	204
20	Partial depletion of the proinflammatory monocyte population is neuroprotective in the myenteric plexus but not in the basal ganglia in a MPTP mouse model of Parkinson's disease. Brain, Behavior, and Immunity, 2015, 46, 154-167.	4.1	42
21	GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer's disease. Brain, Behavior, and Immunity, 2015, 46, 112-120.	4.1	50
22	IL-1Â Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3. Journal of Neuroscience, 2015, 35, 10715-10730.	3.6	53
23	The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages. Biochemical and Biophysical Research Communications, 2015, 467, 484-490.	2.1	50
24	The Inflammasome Pyrin Contributes to Pertussis Toxin-Induced IL-1β Synthesis, Neutrophil Intravascular Crawling and Autoimmune Encephalomyelitis. PLoS Pathogens, 2014, 10, e1004150.	4.7	73
25	Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Experimental Neurology, 2014, 258, 62-77.	4.1	97
26	Neutrophils Mediate Blood–Spinal Cord Barrier Disruption in Demyelinating Neuroinflammatory Diseases. Journal of Immunology, 2014, 193, 2438-2454.	0.8	214
27	Mutant huntingtin is present in neuronal grafts in huntington disease patients. Annals of Neurology, 2014, 76, 31-42.	5.3	158
28	Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood, 2014, 124, 2173-2183.	1.4	513
29	Central Canal Ependymal Cells Proliferate Extensively in Response to Traumatic Spinal Cord Injury but Not Demyelinating Lesions. PLoS ONE, 2014, 9, e85916.	2.5	88
30	Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach. Biomedical Optics Express, 2013, 4, 2003.	2.9	23
31	Automated Filtering of Intrinsic Movement Artifacts during Two-Photon Intravital Microscopy. PLoS ONE, 2013, 8, e53942.	2.5	61
32	P2X ₄ Receptors Influence Inflammasome Activation after Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 3058-3066.	3.6	154
33	Platelets can enhance vascular permeability. Blood, 2012, 120, 1334-1343.	1.4	200
34	In Situ Hybridization Within the CNS Tissue: Combining In Situ Hybridization with Immunofluorescence. Neuromethods, 2012, , 53-70.	0.3	1
35	Functional Recovery after Peripheral Nerve Injury is Dependent on the Pro-Inflammatory Cytokines IL-1Î ² and TNF: Implications for Neuropathic Pain. Journal of Neuroscience, 2011, 31, 12533-12542.	3.6	276
36	Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain, Behavior, and Immunity, 2010, 24, 540-553.	4.1	209

STEVE LACROIX

#	Article	IF	CITATIONS
37	Transcriptional profiling of the injured sciatic nerve of mice carrying the Wld(S) mutant gene: Identification of genes involved in neuroprotection, neuroinflammation, and nerve regeneration. Brain, Behavior, and Immunity, 2010, 24, 1254-1267.	4.1	84
38	Endogenous signals initiating inflammation in the injured nervous system. Glia, 2009, 57, 351-361.	4.9	62
39	Requirement of Myeloid Cells for Axon Regeneration. Journal of Neuroscience, 2008, 28, 9363-9376.	3.6	214
40	Toll-Like Receptor Signaling Is Critical for Wallerian Degeneration and Functional Recovery after Peripheral Nerve Injury. Journal of Neuroscience, 2007, 27, 12565-12576.	3.6	221
41	Expression profile of receptors for myelin-associated inhibitors of axonal regeneration in the intact and injured mouse central nervous system. Molecular and Cellular Neurosciences, 2007, 34, 519-538.	2.2	65
42	T cells contribute to lysophosphatidylcholine-induced macrophage activation and demyelination in the CNS. Glia, 2007, 55, 294-302.	4.9	59
43	Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved. Journal of Comparative Neurology, 2007, 500, 267-285.	1.6	513
44	Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Glia, 2006, 53, 103-113.	4.9	87
45	A Novel Method for Multiple Labeling Combining In Situ Hybridization With Immunofluorescence. Journal of Histochemistry and Cytochemistry, 2006, 54, 1303-1313.	2.5	18
46	Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1Â and interleukin-1Â in Wallerian degeneration. Brain, 2005, 128, 854-866.	7.6	262
47	Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: A quantitative study. Journal of Comparative Neurology, 2004, 473, 147-161.	1.6	139
48	MOLECULARAPPROACHES TOSPINALCORDREPAIR. Annual Review of Neuroscience, 2003, 26, 411-440.	10.7	184
49	NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Experimental Neurology, 2003, 181, 47-56.	4.1	136
50	Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. Journal of Comparative Neurology, 2002, 454, 213-228.	1.6	107
51	Proinflammatory signal transduction pathways in the CNS during systemic immune response. Neurolmmune Biology, 2001, 1, 163-173.	0.2	3
52	Neurotrophic Factors and Gene Therapy in Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2000, 14, 265-275.	2.9	30
53	How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectious Stimuli. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 22-38.	1.8	226
54	How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectious Stimuli. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 22-38.	1.8	22

STEVE LACROIX

#	Article	IF	CITATIONS
55	An Essential Role of Interleukin-1β in Mediating NF-κB Activity and COX-2 Transcription in Cells of the Blood–Brain Barrier in Response to a Systemic and Localized Inflammation But Not During Endotoxemia. Journal of Neuroscience, 1999, 19, 10923-10930.	3.6	258
56	The Bacterial Endotoxin Lipopolysaccharide has the Ability to Target the Brain in Upregulating Its Membrane CD14 Receptor Within Specific Cellular Populations. Brain Pathology, 1998, 8, 625-640.	4.1	193
57	Calretinin gene expression in the human thalamus. Molecular Brain Research, 1998, 54, 1-12.	2.3	12
58	Effect of Acute Systemic Inflammatory Response and Cytokines on the Transcription of the Genes Encoding Cyclooxygenase Enzymes (COXâ€1 and COXâ€2) in the Rat Brain. Journal of Neurochemistry, 1998, 70, 452-466.	3.9	238
59	Influence of Interleukin-6 on Neural Activity and Transcription of the Gene Encoding Corticotrophin-releasing Factor in the Rat Brain: An Effect Depending Upon the Route of Administration. European Journal of Neuroscience, 1997, 9, 1461-1472.	2.6	51
60	Functional circuitry in the brain of immune-challenged rats: Partial involvement of prostaglandins. , 1997, 387, 307-324.		109
61	Role of cyclo-oxygenase pathways in the stimulatory influence of immune challenge on the transcription of a specific CRF receptor subtype in the rat brain. Journal of Chemical Neuroanatomy, 1996, 10, 53-71.	2.1	35
62	C-fos mRNA pattern and corticotropin-releasing factor neuronal activity throughout the brain of rats injected centrally with a prostaglandin of E2 type. Journal of Neuroimmunology, 1996, 70, 163-179.	2.3	87