Andrew Z Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/755492/publications.pdf Version: 2024-02-01

ΔΝΙΠΡΕΨΙΖΧΙΛΟ

#	Article	IF	CITATIONS
1	ALKBH5 Modulates Hematopoietic Stem and Progenitor Cell Energy Metabolism through m 6a Modification-Mediated RNA Stability. Blood, 2021, 138, 298-298.	1.4	0
2	N6-methyladenine in DNA antagonizes SATB1 in early development. Nature, 2020, 583, 625-630.	27.8	53
3	A New Link to Primate Heart Development. Developmental Cell, 2020, 54, 685-686.	7.0	1
4	m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity, 2020, 52, 1007-1021.e8.	14.3	99
5	Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA. Cell Research, 2020, 30, 197-210.	12.0	71
6	RNA-based CRISPR-Mediated Loss-of-Function Mutagenesis in Human Pluripotent Stem Cells. Journal of Molecular Biology, 2020, 432, 3956-3964.	4.2	3
7	N(6)-Methyladenine in eukaryotes. Cellular and Molecular Life Sciences, 2019, 76, 2957-2966.	5.4	23
8	Loss of METTL3 Mediated m6A RNA Modification Results in Double-Stranded RNA Induced Innate Immune Response and Hematopoietic Failure. Blood, 2019, 134, 450-450.	1.4	0
9	N-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175, 1228-1243.e20.	28.9	236
10	Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing. Genome Research, 2018, 28, 1067-1078.	5.5	80
11	Mettl3 Mediated m6A Modification Is Essential in Fetal Hematopoiesis. Blood, 2018, 132, 3825-3825.	1.4	1
12	Quality control towards the application of induced pluripotent stem cells. Current Opinion in Genetics and Development, 2017, 46, 164-169.	3.3	4
13	Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature, 2017, 548, 219-223.	27.8	211
14	DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature, 2016, 532, 329-333.	27.8	554
15	Roles for Histone Acetylation in Regulation of Telomere Elongation and Twoâ€cell State in Mouse ES Cells. Journal of Cellular Physiology, 2015, 230, 2337-2344.	4.1	21
16	Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells. Cell Stem Cell, 2015, 17, 543-556.	11.1	80
17	Adaption by Rewiring Epigenetic Landscapes. Cell Stem Cell, 2015, 17, 249-250.	11.1	1
18	The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell, 2014, 15, 295-309.	11.1	137

ANDREW Z XIAO

#	Article	IF	CITATIONS
19	Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs. Cell Stem Cell, 2014, 15, 281-294.	11.1	58
20	Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin Silencing. Developmental Cell, 2014, 29, 7-19.	7.0	102
21	Epigenetic regulation in neural crest development. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 788-796.	1.6	15
22	Dephosphorylation of the C-terminal Tyrosyl Residue of the DNA Damage-related Histone H2A.X Is Mediated by the Protein Phosphatase Eyes Absent. Journal of Biological Chemistry, 2009, 284, 16066-16070.	3.4	122
23	WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature, 2009, 457, 57-62.	27.8	360