Pilar Mur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7554628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. European Journal of Human Genetics, 2012, 20, 762-768.	2.8	76
2	Role of POLE and POLD1 in familial cancer. Genetics in Medicine, 2020, 22, 2089-2100.	2.4	76
3	Codeletion of 1p and 19q determines distinct gene methylation and expression profiles in IDH-mutated oligodendroglial tumors. Acta Neuropathologica, 2013, 126, 277-289.	7.7	49
4	Evidence suggests that germline <i>RNF43</i> mutations are a rare cause of serrated polyposis. Gut, 2018, 67, 2230-2232.	12.1	48
5	Genetic Alterations Associated With Progression and Recurrence in Meningiomas. Journal of Neuropathology and Experimental Neurology, 2012, 71, 882-893.	1.7	47
6	Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in glioma patients. Journal of Neuro-Oncology, 2015, 122, 441-450.	2.9	41
7	Delineating the Phenotypic Spectrum of the NTHL1-AssociatedÂPolyposis. Clinical Gastroenterology and Hepatology, 2017, 15, 461-462.	4.4	41
8	The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells, 2021, 10, 710.	4.1	41
9	Molecular Classification Defines 4 Prognostically Distinct Glioma Groups Irrespective of Diagnosis and Grade. Journal of Neuropathology and Experimental Neurology, 2015, 74, 241-249.	1.7	38
10	MLH1 methylation screening is effective in identifying epimutation carriers. European Journal of Human Genetics, 2012, 20, 1256-1264.	2.8	36
11	Gene expression changes associated with erlotinib response in glioma cell lines. European Journal of Cancer, 2013, 49, 1641-1653.	2.8	35
12	Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology, 2018, 154, 181-194.e20.	1.3	32
13	NTHL1 biallelic mutations seldom cause colorectal cancer, serrated polyposis or a multi-tumor phenotype, in absence of colorectal adenomas. Scientific Reports, 2019, 9, 9020.	3.3	23
14	Plasma Viral miRNAs Indicate a High Prevalence of Occult Viral Infections. EBioMedicine, 2017, 20, 182-192.	6.1	19
15	Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are infrequent in familial colorectal cancer and polyposis. Molecular Cancer, 2018, 17, 23.	19.2	19
16	miR-543 regulates the epigenetic landscape of myelofibrosis by targeting TET1 and TET2. JCI Insight, 2020, 5, .	5.0	18
17	Germline variation in O6-methylguanine-DNA methyltransferase (MGMT) as cause of hereditary colorectal cancer. Cancer Letters, 2019, 447, 86-92.	7.2	12
18	Germline variation in the oxidative DNA repair genes NUDT1 and OGG1 is not associated with hereditary colorectal cancer or polyposis. Human Mutation, 2018, 39, 1214-1225.	2.5	10

Pilar Mur

#	Article	IF	CITATIONS
19	<i>TP53</i> , a gene for colorectal cancer predisposition in the absence of Li-Fraumeni-associated phenotypes. Gut, 2021, 70, 1139-1146.	12.1	10
20	Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis. Scientific Reports, 2016, 6, 20697.	3.3	9
21	Non-Lynch Familial and Early-Onset Colorectal Cancer Explained by Accumulation of Low-Risk Genetic Variants. Cancers, 2021, 13, 3857.	3.7	8
22	Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Molecular Aspects of Medicine, 2019, 69, 27-40.	6.4	5
23	AMER1 Is a Frequently Mutated Gene in Colorectal Cancer—Letter. Clinical Cancer Research, 2015, 21, 4985-4985.	7.0	4
24	Reply to: "Development of an MSI-positive colon tumor with aberrant DNA methylation in a PPAP patient― Journal of Human Genetics, 2020, 65, 513-514.	2.3	4
25	Expanding the phenotype of cerebellarâ€facialâ€dental syndrome: Two siblings with a novel variant in BRF1. American Journal of Medical Genetics, Part A, 2020, 182, 2742-2745.	1.2	4
26	Solving the enigma of POLD1 p.V295M as a potential cause of increased cancer risk. European Journal of Human Genetics, 2022, 30, 485-489.	2.8	2
27	Potential Involvement of NSD1, KRT24 and ACACA in the Genetic Predisposition to Colorectal Cancer. Cancers, 2022, 14, 699.	3.7	0