
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7554567/publications.pdf Version: 2024-02-01

D FEDNÃ:NDEZ

#	Article	IF	CITATIONS
1	Morphology, Luminescence, and Optical Properties of Tb―and Li odoped ZnO Elongated Nano―and Microstructures. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	2
2	Characterization, Luminescence and Optical Resonant Modes of Eu-Li Co-Doped ZnO Nano- and Microstructures. Applied Sciences (Switzerland), 2022, 12, 6948.	1.3	2
3	ZnO Nanoparticles with Controllable Ce Content for Efficient Photocatalytic Degradation of MB Synthesized by the Polyol Method. Catalysts, 2021, 11, 71.	1.6	8
4	Niobium Oxide and Tantalum Oxide Micro- and Nanostructures Grown Using Material Recovered from Mining Tailings. Materials Proceedings, 2021, 3, .	0.2	0
5	Characterization of Nb22O54 microrods grown from niobium oxide powders recovered from mine tailings. Ceramics International, 2021, 47, 13859-13864.	2.3	5
6	Competition Effects during Femtosecond Laser Induced Element Redistribution in Ba- and La-Migration Based Laser Written Waveguides. Materials, 2021, 14, 3185.	1.3	3
7	Formation of vacancy point-defects in hydroxyapatite nanobelts by selective incorporation of Fe3+ ions in Ca(II) sites. A CL and XPS study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115308.	1.7	17
8	Vapor-solid growth ZnO:ZrO2 micro and nanocomposites. Journal of Alloys and Compounds, 2021, 877, 160219.	2.8	14
9	Study of the influence of the precursors on the sensing properties of ZnO:Cu system. Ceramics International, 2020, 46, 8358-8367.	2.3	2
10	Growth and characterisation of ZnO micro/nanostructures doped with cerium for photocatalytic degradation applications. Journal of Alloys and Compounds, 2020, 820, 153146.	2.8	14
11	Evolution of Whispering Gallery Modes in Li-Doped ZnO Hexagonal Micro- and Nanostructures. Applied Sciences (Switzerland), 2020, 10, 8602.	1.3	4
12	Study of the influence of dopant precursor on the growth and properties of Li-doped ZnO. Journal of Physics and Chemistry of Solids, 2020, 139, 109354.	1.9	12
13	Preferential Growth of ZnO Micro- and Nanostructure Assemblies on Fs-Laser-Induced Periodic Structures. Nanomaterials, 2020, 10, 731.	1.9	4
14	Enhanced UV emission of Li–Y co-doped ZnO thin films via spray pyrolysis. Journal of Alloys and Compounds, 2019, 808, 151710.	2.8	8
15	Dysprosium Removal from Water Using Active Carbons Obtained from Spent Coffee Ground. Nanomaterials, 2019, 9, 1372.	1.9	23
16	New photocatalytic materials obtained from the recycling of alkaline and Zn/C spent batteries. Journal of Materials Research and Technology, 2019, 8, 2809-2818.	2.6	17
17	Correlative study of structural and optical properties of ZnSe under severe plastic deformation. Journal of Applied Physics, 2019, 126, 225702.	1.1	6
18	Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis. Ceramics International, 2019, 45, 6842-6852.	2.3	39

#	Article	IF	CITATIONS
19	Luminescence and cathodoluminescence properties of MIPr(PO3)4 (MI=Na, Li, K) and PrP5O14. Physica B: Condensed Matter, 2019, 554, 121-125.	1.3	3
20	Design and Production of Femtosecond Laser Writable Borate-based Glasses for Photonic Devices. , 2019, , .		0
21	In-situ transmission electron microscopy study of melting and diffusion processes at the nanoscale in ZnO nanotubes with Sn cores. Journal of Alloys and Compounds, 2018, 744, 421-425.	2.8	0
22	Luminescence and gas-sensing properties of ZnO obtained from the recycling of alkaline batteries. Journal of Materials Science, 2018, 53, 2026-2033.	1.7	4
23	Luminescence and light guiding properties of Er and Li codoped ZnO nanostructures. Journal of Luminescence, 2018, 195, 396-401.	1.5	22
24	From spent alkaline batteries to Zn _x Mn _{3â^x} O ₄ by a hydrometallurgical route: synthesis and characterization. RSC Advances, 2018, 8, 33496-33505.	1.7	15
25	Electronic and Nanostructured Functional Materials Dedication to Professor Javier Piqueras. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800703.	0.8	0
26	Imaging Ellipsometry Determination of the Refractive Index Contrast and Dispersion of Channel Waveguides Inscribed by fs‣aser Induced Ionâ€Migration. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800258.	0.8	6
27	Fast growth of undoped and Sn- and Tb-doped ZnO nanowires by Joule heating of Zn. CrystEngComm, 2018, 20, 4449-4454.	1.3	8
28	Growth by Vaporâ€Solid Method and Luminescence Characterization of Znâ€Chalcogenides Micro―and Nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800219.	0.8	1
29	Optical spectroscopy study of nano- and microstructures fabricated by femtosecond laser pulses on ZnO based systems. CrystEngComm, 2018, 20, 2952-2960.	1.3	9
30	Femtosecond laser writing of photonic devices in borate glasses compositionally designed to be laser writable. Optics Letters, 2018, 43, 2523.	1.7	17
31	Synthesis and microstructural properties of zinc oxide nanoparticles prepared by selective leaching of zinc from spent alkaline batteries using ammoniacal ammonium carbonate. Journal of Cleaner Production, 2017, 148, 795-803.	4.6	34
32	High-Efficiency Waveguide Optical Amplifiers and Lasers via FS-Laser Induced Local Modification of the Glass Composition. Journal of Lightwave Technology, 2017, 35, 2955-2959.	2.7	23
33	Synthesis and characterization of ZnO micro- and nanostructures grown from recovered ZnO from spent alkaline batteries. Journal of Environmental Chemical Engineering, 2017, 5, 2903-2911.	3.3	14
34	Raman spectroscopy of femtosecond laser written low propagation loss optical waveguides in Schott N-SF8 glass. Optical Materials, 2017, 72, 626-631.	1.7	6
35	Characterization and sensing properties of ZnO film prepared by single source chemical vapor deposition. Advanced Powder Technology, 2017, 28, 23-29.	2.0	19
36	High efficiency waveguide-based optical amplifiers and lasers fabricated by femtosecond-laser induced ion migration. , 2017, , .		0

#	Article	IF	CITATIONS
37	Interconfigurational and intraconfigurational transitions of Yb2+ and Yb3+ ions in hydroxyapatite: A cathodoluminescence study. Acta Materialia, 2017, 135, 35-43.	3.8	16
38	Optical spectroscopy characterization of Cu doped ZnO nano- and microstructures grown by vapor-solid method. Journal of Alloys and Compounds, 2016, 687, 161-167.	2.8	6
39	Gallium doped ZnS micro- and nanostructures: thermal synthesis and structural properties. Materials Research Express, 2015, 2, 035902.	0.8	3
40	Optical characterization of Ga-doped ZnS micro- and nanostructures. Journal of Materials Science, 2015, 50, 2103-2112.	1.7	9
41	Controlling plasma distributions as driving forces for ion migration during fs laser writing. Journal Physics D: Applied Physics, 2015, 48, 155101.	1.3	33
42	Growth of ZnO nanostructures by femtosecond laser irradiation of polycrystalline targets. Applied Physics A: Materials Science and Processing, 2015, 121, 607-617.	1.1	1
43	Light guiding and optical resonances in ZnS microstructures doped with Ga or In. Journal of Materials Chemistry C, 2015, 3, 10981-10989.	2.7	10
44	Dual Regimes of Ion Migration in High Repetition Rate Femtosecond Laser Inscribed Waveguides. IEEE Photonics Technology Letters, 2015, 27, 1068-1071.	1.3	26
45	Strong ion migration in high refractive index contrast waveguides formed by femtosecond laser pulses in phosphate glass. , 2014, , .		2
46	Femtosecond-laser inscription via local modification of the glass composition in phosphate glasses. , 2014, , .		0
47	Role of ion migrations in ultrafast laser written tellurite glass waveguides. Optics Express, 2014, 22, 15298.	1.7	34
48	Control of waveguide properties by tuning femtosecond laser induced compositional changes. Applied Physics Letters, 2014, 105, .	1.5	27
49	Luminescence and waveguiding behavior in Tb doped ZnO micro and nanostructures. Journal of Alloys and Compounds, 2014, 610, 416-421.	2.8	24
50	Growth by thermal evaporation of Al doped ZnS elongated micro- and nanostructures and their cathodoluminescence properties. Journal of Alloys and Compounds, 2014, 603, 57-64.	2.8	9
51	Recombination processes in Teâ€doped Zn <scp>O</scp> microstructures. Physica Status Solidi (B): Basic Research, 2014, 251, 683-688.	0.7	10
52	Influence of indium doping on the morphology of ZnS nanostructures grown by a vapor–solid method. CrystEngComm, 2013, 15, 7080.	1.3	17
53	In situTEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops. Journal Physics D: Applied Physics, 2013, 46, 395301.	1.3	3
54	Cathodoluminescence of In doped ZnS nanostructures grown by vapor–solid method. Journal of Alloys and Compounds, 2013, 563, 113-118.	2.8	11

#	Article	IF	CITATIONS
55	Luminescence and Raman study of Zn4In2O7 nanobelts and plates. Superlattices and Microstructures, 2013, 56, 1-7.	1.4	5
56	lon migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Optics Letters, 2013, 38, 5248.	1.7	61
57	Thermal growth and luminescence of wurtzite ZnS nanowires and nanoribbons. Journal of Crystal Growth, 2012, 348, 85-90.	0.7	10
58	Complex hierarchical arrangements of stacked nanoplates in Alâ€doped ZnO. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1487-1492.	0.8	2
59	Nanowires and stacks of nanoplates of Mn doped ZnO synthesized by thermal evaporation-deposition. Materials Chemistry and Physics, 2012, 132, 1119-1124.	2.0	22
60	Fe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation-deposition. Journal of Applied Physics, 2011, 110, .	1.1	33
61	Growth and characterization of Erâ€doped ZnO elongated nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 868-873.	0.8	12
62	Self-assembled three-dimensional Al-doped ZnO nanorod networks. Semiconductor Science and Technology, 2011, 26, 085035.	1.0	6
63	Growth and Cathodoluminescence of Eu Doped ZnO Nanoneedles and Branched Nanoneedle Structures. Journal of Nanoscience and Nanotechnology, 2010, 10, 502-507.	0.9	20
64	Dense vertical nanoplates arrays and nanobelts of indium doped ZnO grown by thermal treatment of ZnS–ln2O3 powders. Journal of Crystal Growth, 2010, 312, 3117-3121.	0.7	15
65	Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods. Nanotechnology, 2010, 21, 225604.	1.3	10
66	10.1007/s11451-008-1029-9. , 2010, 50, 164.		0
67	Al doped ZnO nanoplate arrays and microbox structures grown by thermal deposition. Journal of Applied Physics, 2009, 105, 054315.	1.1	21
68	Growth and Luminescence of Nanowires and Oriented Nanoplate Arrays of Mg Doped ZnO. Journal of Nano Research, 2009, 4, 27-32.	0.8	8
69	Self-assembled tin-doped ZnO nanowire and nanoplate structures grown by thermal treatment of ZnS powder. Journal of Crystal Growth, 2009, 311, 3231-3234.	0.7	23
70	Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods. Journal Physics D: Applied Physics, 2009, 42, 225101.	1.3	12
71	Indium-zinc-oxide nanobelts with superlattice structure. Applied Physics Letters, 2009, 95, .	1.5	30
72	Cathodoluminescence study of Te-doped ZnO microstructures grown by a vapour–solid process. Journal of Materials Science, 2008, 43, 2844-2848.	1.7	19

#	Article	IF	CITATIONS
73	Cathodoluminescence study of semiconductor oxide micro- and nanostructures grown by vapor deposition. Scanning, 2008, 30, 354-357.	0.7	3
74	Cathodoluminescence characterization of ZnO:Te microstructures obtained with ZnTe and TeO2 doping precursors. Superlattices and Microstructures, 2008, 43, 600-604.	1.4	13
75	Raman spectra of structures with CdTe-, ZnTe-, and CdSe-based quantum dots and their relation to the fabrication technology. Physics of the Solid State, 2008, 50, 164-167.	0.2	45
76	Growth and luminescence of oriented nanoplate arrays in tin doped ZnO. Nanotechnology, 2007, 18, 115606.	1.3	45
77	ZnO Nanostructured Microspheres and Elongated Structures Grown by Thermal Treatment of ZnS Powder. Crystal Growth and Design, 2007, 7, 836-839.	1.4	27
78	Sn AND Mg DOPED ZnO NANOWIRES AND NANOPLATES. , 2007, , .		0
79	Fabrication of low dimensional structures of ZnSe and ZnO by thermal and mechanical methods. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1066-1069.	0.8	0
80	Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO. Nanotechnology, 2005, 16, 931-935.	1.3	43
81	GROWTH AND LUMINESCENCE OF ELONGATED MICRO- AND NANOSTRUCTURES OF OXIDE SEMICONDUCTORS. , 2005, , .		0
82	Growth and luminescence properties of micro- and nanoneedles in sintered CdSe. Applied Physics Letters, 2004, 85, 5968-5970.	1.5	28
83	Luminescence properties of mechanically milled ZnSe. Physica Status Solidi A, 2004, 201, 3183-3187.	1.7	8
84	Study of structure and luminescence of CdSe Nanocrystals obtained by ball milling. Journal of Applied Physics, 2004, 96, 2210-2213.	1.1	26
85	Porosity-induced gain of luminescence in CdSe. Semiconductor Science and Technology, 2004, 19, L121-L123.	1.0	13
86	Luminescence properties of mechanically milled and laser irradiated ZnO. Nanotechnology, 2003, 14, 794-798.	1.3	54
87	Scanning tunneling microscopy study of the surface electrical properties of ZnO films grown by pulsed laser deposition. Physica Status Solidi A, 2003, 195, 183-187.	1.7	1
88	Cathodoluminescence and scanning tunnelling spectroscopy of ZnO single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 91-92, 345-348.	1.7	14
89	Scanning electron microscopy study of twins in ZnSe single crystals grown by solid-phase recrystallization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 130-133.	1.7	3
90	Cathodoluminescence and photoluminescence study of plastically deformed ZnTe bulk single crystals. Semiconductor Science and Technology, 2001, 16, 289-292.	1.0	4

#	Article	IF	CITATIONS
91	Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals. Journal Physics D: Applied Physics, 2001, 34, 2945-2949.	1.3	38
92	Scanning tunnelling spectroscopy characterization of ZnO single crystals. Semiconductor Science and Technology, 2001, 16, 589-593.	1.0	13
93	Study of growth hillocks in GaN:Si films by electron beam induced current imaging. Journal of Applied Physics, 2001, 90, 1058-1060.	1.1	5
94	Scanning electron microscopy characterization of ZnSe single crystals grown by solid-phase recrystallization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 78, 105-108.	1.7	16
95	Deformation-induced defect levels in ZnSe crystals. Semiconductor Science and Technology, 1999, 14, 430-434.	1.0	13
96	Effect of laser irradiation on the luminescence of Mg and Si-doped GaN films. Journal of Applied Physics, 1999, 85, 1120-1123.	1.1	34
97	Influence of deformation on the luminescence of GaN epitaxial films. Semiconductor Science and Technology, 1998, 13, 900-905.	1.0	31
98	Deep energy levels in CdTe and CdZnTe. Journal of Applied Physics, 1998, 83, 2121-2126.	1.1	274
99	Cathodoluminescence microscopy and photoluminescence of defects in ZnTe. Semiconductor Science and Technology, 1998, 13, 410-416.	1.0	16
100	Effect of Plastic Deformation on the Luminescence of ZnSe Crystals. Solid State Phenomena, 1998, 63-64, 207-214.	0.3	2
101	Luminescence from growth topographic features in GaN:Si films. Journal of Applied Physics, 1998, 83, 462-465.	1.1	18
102	Study of defects in GaN films by cross-sectional cathodoluminescence. Journal of Applied Physics, 1998, 83, 2796-2799.	1.1	22
103	Cathodoluminescence study of laser recrystallized CdTe layers. Applied Physics Letters, 1997, 71, 3096-3098.	1.5	9
104	Midgap traps related to compensation processes in CdTe alloys. Physical Review B, 1997, 56, 14897-14900.	1.1	34
105	Analyses of Compensation Related Defects in II-VI Compounds. Materials Research Society Symposia Proceedings, 1997, 487, 269.	0.1	0
106	Cross-sectional cathodoluminescence of GaN epitaxial films. Materials Research Society Symposia Proceedings, 1997, 482, 726.	0.1	0
107	Effect of ion beam milling on the defect structure of CdTe. Semiconductor Science and Technology, 1996, 11, 1354-1357.	1.0	19
108	Investigation Of Deep Energy Levels In II-VI Compounds. Materials Research Society Symposia Proceedings, 1996, 442, 605.	0.1	0

#	Article	IF	CITATIONS
109	Comparison of electrical and luminescence data for theAcenter in CdTe. Applied Physics Letters, 1996, 69, 3510-3512.	1.5	60
110	Compensation and deep levels in II–VI compounds. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 42, 302-305.	1.7	10
111	Cathodoluminescence and photoinduced current spectroscopy studies of defects inCd0.8Zn0.2Te. Physical Review B, 1996, 54, 7622-7625.	1.1	39
112	Electrical and Optical Properties of Defects by Complementary Spectroscopies. Materials Research Society Symposia Proceedings, 1995, 411, 177.	0.1	0
113	Deep Level Cathodoluminescence in Deformed CdTe Crystals. Physica Status Solidi A, 1995, 147, 75-80.	1.7	6
114	Cathodoluminescence characterization of Geâ€doped CdTe crystals. Journal of Applied Physics, 1995, 78, 1992-1995.	1.1	37
115	Effect of thermal annealing on Te precipitates in CdTe wafers studied by Raman scattering and cathodoluminescence. Journal of Applied Physics, 1995, 77, 2806-2808.	1.1	39
116	Elimination of Te precipitates from CdTe wafers. Semiconductor Science and Technology, 1995, 10, 870-875.	1.0	19
117	Study of defects in CdTe: Cl by cathodoluminescence microscopy. Materials Letters, 1995, 23, 227-230.	1.3	9
118	Study of point defects in CdTe and CdTe:V by cathodoluminescence. Journal of Applied Physics, 1994, 76, 3720-3723.	1.1	16
119	Scanning electron acoustic microscopy of Bi2Sr2CaCu2Ox. Solid State Communications, 1993, 87, 843-845.	0.9	1
120	Luminescence from Bi2Sr2CaCu2Oxand YBa2Cu3O7â^'xfilms in the scanning electron microscope. Journal of Applied Physics, 1992, 71, 2778-2782.	1.1	14
121	Local distribution of deep centers in GaP studied by infrared cathodoluminescence. Applied Physics Letters, 1991, 58, 257-259.	1.5	26
122	Composition dependence of cathodoluminescence emission of AlxGa1â^'xP. Solid State Communications, 1990, 76, 195-196.	0.9	2
123	Study of structural changes in YBa2Cu3O7â^'xby cathodoluminescence in the scanning electron microscope. Applied Physics Letters, 1990, 57, 2722-2724.	1.5	15
124	A positron study of sintering processes in ZnO-based ceramics. Journal of Physics Condensed Matter, 1989, 1, 4853-4858.	0.7	2
125	Scanning electron acoustic microscopy of ZnO ceramics. Materials Chemistry and Physics, 1989, 24, 215-218.	2.0	4
126	Localized luminescence in ZnO: Mn ceramics. Applied Physics A: Materials Science and Processing, 1988, 46, 1-3.	1.1	7

#	Article	IF	CITATIONS
127	Annealing effects on mechanically damaged ZnO ceramics. Physica Status Solidi A, 1988, 107, 197-203.	1.7	6
128	Universal relations between range and damage profile parameters. Radiation Effects, 1987, 103, 89-101.	0.4	14
129	Characterization of zirconia/mullite ceramics by cathodoluminescence technique. Applied Physics A: Solids and Surfaces, 1987, 44, 299-303.	1.4	15
130	Analytical approximations for range and damage profile parameter predictions on a microcomputer. Nuclear Instruments & Methods in Physics Research B, 1987, 19-20, 28-31.	0.6	9