
Harald Gustav Zechmeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/755426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current and historical factors drive variation of reproductive traits in unisexual mosses in Europe: A case study. Journal of Systematics and Evolution, 2023, 61, 213-226.	3.1	3
2	O-methylated N-glycans Distinguish Mosses from Vascular Plants. Biomolecules, 2022, 12, 136.	4.0	8
3	First insights into the distribution and ecology of Tortula schimperi in Austria. Herzogia, 2021, 34, .	0.4	0
4	Deadwood volumes matter in epixylic bryophyte conservation, but precipitation limits the establishment of substrate-specific communities. Forest Ecology and Management, 2021, 493, 119285.	3.2	9
5	Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence. Plants, 2021, 10, 61.	3.5	4
6	The Fate of Bryophyte Sporophytes—Phenology and Vectors of Buxbaumia viridis in the Kalkalpen National Park, Austria. Plants, 2020, 9, 1320.	3.5	5
7	Indoor monitoring of heavy metals and NO2 using active monitoring by moss and Palmes diffusion tubes. Environmental Sciences Europe, 2020, 32, .	5.5	8
8	Bemerkenswerte Neufunde von Moosen in Niederösterreich sowie zwei Erstnachweise für ×sterreich. Herzogia, 2020, 33, 207.	0.4	0
9	Bryophytes in a latrine as indicators of climate change in the 17th century. Vegetation History and Archaeobotany, 2019, 28, 575-581.	2.1	7
10	Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe. Environmental Sciences Europe, 2018, 30, 53.	5.5	15
11	Habitat Structure, Quality and Landscape Predict Species Richness and Communities of Collembola in Dry Grasslands in Austria. Insects, 2018, 9, 81.	2.2	11
12	Modelling and mapping heavy metal and nitrogen concentrations in moss in 2010 throughout Europe by applying Random Forests models. Atmospheric Environment, 2017, 156, 146-159.	4.1	22
13	Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales. Annals of Forest Science, 2017, 74, 1.	2.0	7
14	Assessment of vertical element distribution in street canyons using the moss Sphagnum girgensohnii: A case study in Belgrade and Moscow cities. Atmospheric Pollution Research, 2016, 7, 690-697.	3.8	20
15	Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environmental Science and Pollution Research, 2016, 23, 10457-10476.	5.3	35
16	Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. Science of the Total Environment, 2015, 538, 600-610.	8.0	20
17	Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some "hotspots―remain in 2010. Environmental Pollution, 2015, 200, 93-104.	7.5	136
18	Comments on J.A. Fernandez, M.T. Boquete, A. Carballeira, J.R. Aboal (2015). A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Science of the Total Environment 517: 132–150. Science of the Total Environment, 2015, 538, 1024-1026.	8.0	4

#	Article	IF	CITATIONS
19	Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environmental Pollution, 2014, 194, 50-59.	7.5	48
20	Species richness in dry grassland patches of eastern Austria: A multi-taxon study on the role of local, landscape and habitat quality variables. Agriculture, Ecosystems and Environment, 2014, 182, 25-36.	5.3	68
21	Acidification and Nitrogen Eutrophication of Austrian Forest Soils. Applied and Environmental Soil Science, 2012, 2012, 1-9.	1.7	24
22	Monitoring of heavy metal concentrations in home outdoor air using moss bags. Environmental Pollution, 2011, 159, 954-962.	7.5	31
23	Do metal concentrations in moss from the Zackenberg area, Northeast Greenland, provide a baseline for monitoring?. Environmental Science and Pollution Research, 2011, 18, 91-98.	5.3	11
24	Mapping atmospheric depositions of cadmium and lead in Germany based on EMEP deposition data and the European Moss Survey 2005. Environmental Sciences Europe, 2011, 23, 19.	11.0	8
25	Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals?. Journal of Soils and Sediments, 2010, 10, 1572-1584.	3.0	60
26	First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses. Atmospheric Environment, 2010, 44, 3485-3491.	4.1	46
27	Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals?. , 2010, 10, 1572.		1
28	Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica. Journal of Tropical Ecology, 2009, 25, 321-330.	1.1	53
29	First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000 and 2005. Journal of Atmospheric Chemistry, 2009, 63, 109-124.	3.2	39
30	Estimation of Heavy Metals Concentrations in Outdoor Air Using Mosses*. Epidemiology, 2009, 20, S77.	2.7	1
31	Temporal patterns of metal deposition at various scales in Austria during the last two decades. Atmospheric Environment, 2008, 42, 1301-1309.	4.1	12
32	Metal accumulation in mosses across national boundaries: Uncovering and ranking causes of spatial variation. Environmental Pollution, 2008, 151, 377-388.	7.5	49
33	Total Nitrogen Content and δ15N Signatures in Moss Tissue: Indicative Value for Nitrogen Deposition Patterns and Source Allocation on a Nationwide Scale. Environmental Science & Technology, 2008, 42, 8661-8667.	10.0	65
34	On the road from environmental biomonitoring to human health aspects: monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs. International Journal of Environment and Pollution, 2008, 32, 486.	0.2	47
35	Assessing airborne pollution effects on bryophytes – lessons learned through long-term integrated monitoring in Austria. Environmental Pollution, 2007, 147, 696-705.	7.5	42
36	Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere, 2007, 67, 1956-1966.	8.2	48

HARALD GUSTAV ZECHMEISTER

#	Article	IF	CITATIONS
37	Spatial distribution patterns of Rhynchostegium megapolitanum at the landscape scale ―an expanding species?. Applied Vegetation Science, 2007, 10, 111-120.	1.9	6
38	Spatial distribution patterns of Rhynchostegium megapolitanum at the landscape scale – an expanding species?. Applied Vegetation Science, 2007, 10, 111.	1.9	11
39	From LTER to LTSER: Conceptualizing the Socioeconomic Dimension of Long-term Socioecological Research. Ecology and Society, 2006, 11, .	2.3	189
40	Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environmental Science and Pollution Research, 2006, 13, 398-405.	5.3	109
41	A Comparison of Biomonitoring Methods for the Estimation of Atmospheric Pollutants in an Industrial Town in Austria. Environmental Monitoring and Assessment, 2006, 117, 245-259.	2.7	19
42	Analyses of platinum group elements in mosses as indicators of road traffic emissions in Austria. Atmospheric Environment, 2006, 40, 7720-7732.	4.1	40
43	Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 2005, 32, 1117-1127.	3.0	115
44	Estimation of element deposition derived from road traffic sources by using mosses. Environmental Pollution, 2005, 138, 238-249.	7.5	129
45	Human appropriation of net primary production and species diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 2004, 102, 213-218.	5.3	106
46	Biomonitoring of Atmospheric Heavy Metal Deposition by Mosses in the Vicinity of Industrial Sites. Journal of Atmospheric Chemistry, 2004, 49, 461-477.	3.2	22
47	Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biological Conservation, 2004, 117, 181-190.	4.1	169
48	Chapter 1 Definitions, strategies and principles for bioindication/biomonitoring of the environment. Trace Metals and Other Contaminants in the Environment, 2003, , 3-39.	0.1	113
49	Biodiversity â€~hot spots' for bryophytes in landscapes dominated by agriculture in Austria. Agriculture, Ecosystems and Environment, 2003, 94, 159-167.	5.3	32
50	Chapter 10 Bryophytes. Trace Metals and Other Contaminants in the Environment, 2003, 6, 329-375.	0.1	58
51	Distribution of endangered bryophytes in Austrian agricultural landscapes. Biological Conservation, 2002, 103, 173-182.	4.1	23
52	Title is missing!. Landscape Ecology, 2002, 17, 657-669.	4.2	216
53	The influence of agricultural land-use intensity on bryophyte species richness. Biodiversity and Conservation, 2001, 10, 1609-1625.	2.6	79
54	Title is missing!. Environmental Monitoring and Assessment, 1998, 52, 441-451.	2.7	42

#	Article	IF	CITATIONS
55	Correlation between altitude and heavy metal deposition in the Alps. Environmental Pollution, 1995, 89, 73-80.	7.5	135
56	Vegetation of European springs: High-rank syntaxa of the Montio-Cardaminetea. Journal of Vegetation Science, 1994, 5, 385-402.	2.2	63