Giuseppe Chirico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/755391/publications.pdf

Version: 2024-02-01

136740 149479 4,142 182 32 56 citations h-index g-index papers 185 185 185 5887 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Melanin concentration maps by label-free super-resolution photo-thermal imaging on melanoma biopsies. Biomedical Optics Express, 2022, 13, 1173.	1.5	4
2	A Miniaturized Imaging Window to Quantify Intravital Tissue Regeneration within a 3D Microscaffold in Longitudinal Studies. Advanced Optical Materials, 2022, 10 , .	3 . 6	7
3	Quantitative active super-resolution thermal imaging: The melanoma case study. Biomolecular Concepts, 2022, 13, 242-255.	1.0	3
4	Prussian Blue Nanoparticle-Mediated Scalable Thermal Stimulation for In Vitro Neuronal Differentiation. Nanomaterials, 2022, 12, 2304.	1.9	2
5	A novel method for spatially-resolved thermal conductivity measurement by super-resolution photo-activated infrared imaging. Materials Today Physics, 2021, 18, 100375.	2.9	5
6	Micro structured tools for cell modeling in the fourth dimension. , 2021, , .		1
7	Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials. Sensors, 2021, 21, 5891.	2.1	10
8	Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry - A European Journal, 2021, 27, 15361-15374.	1.7	24
9	Frontispiece: Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry - A European Journal, 2021, 27, .	1.7	0
10	Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. Beilstein Journal of Nanotechnology, 2020, 11, 1134-1146.	1.5	34
11	Photoacoustic Sensing Instrumentation using 70 W 905 nm Pulsed Laser Source for Proton-Induced Thermoacoustic Effect Emulation. , 2020, , .		1
12	Multiphoton Fabrication of Proteinaceous Nanocomposite Microstructures with Photothermal Activity in the Infrared. Advanced Optical Materials, 2020, 8, 2000584.	3.6	9
13	Suitable Polymeric Coatings to Avoid Localized Surface Plasmon Resonance Hybridization in Printed Patterns of Photothermally Responsive Gold Nanoinks. Molecules, 2020, 25, 2499.	1.7	4
14	Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication. Nanomaterials, 2020, 10, 786.	1.9	10
15	Whole-Section Tumor Micro-Architecture Analysis by a Two-Dimensional Phasor-Based Approach Applied to Polarization-Dependent Second Harmonic Imaging. Frontiers in Oncology, 2019, 9, 527.	1.3	16
16	Photothermally Active Inorganic Nanoparticles: from Colloidal Solutions to Photothermally Active Printed Surfaces and Polymeric Nanocomposite Materials. European Journal of Inorganic Chemistry, 2019, 2019, 4397-4404.	1.0	9
17	Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. Nanotechnology, 2019, 30, 295702.	1.3	22
18	Photo-activated raster scanning thermal imaging at sub-diffraction resolution. Nature Communications, 2019, 10, 5523.	5.8	21

#	Article	IF	CITATIONS
19	Adaptive optics microspectrometer for cross-correlation measurement of microfluidic flows. Journal of Biomedical Optics, 2019, 24, 1.	1.4	2
20	Out of the Randomness: Correlating Noise in Biological Systems. Biophysical Journal, 2018, 114, 2298-2307.	0.2	1
21	Spatiotemporal Image Correlation Analysis for 3D Flow Field Mapping in Microfluidic Devices. Analytical Chemistry, 2018, 90, 2277-2284.	3.2	6
22	Photo-thermal and cytotoxic properties of inkjet-printed copper sulfide films on biocompatible latex coated substrates. Applied Surface Science, 2018, 435, 1087-1095.	3.1	11
23	Jörg Langowski: his scientific legacy and the future it promises. BMC Biophysics, 2018, 11, 5.	4.4	0
24	Gold Nanoparticles for Tissue Engineering. Environmental Chemistry for A Sustainable World, 2018, , 343-390.	0.3	9
25	Random Motion of Chromatin Is Influenced byÂLamin A Interconnections. Biophysical Journal, 2018, 114, 2465-2472.	0.2	8
26	Photothermally Responsive Inks for Inkjetâ€Printing Secure Information. Particle and Particle Systems Characterization, 2018, 35, 1800095.	1.2	8
27	Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications. Beilstein Journal of Nanotechnology, 2018, 9, 2040-2048.	1.5	30
28	Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes. Biochemical and Biophysical Research Communications, 2017, 487, 594-599.	1.0	19
29	Modular approach for bimodal antibacterial surfaces combining photo-switchable activity and sustained biocidal release. Scientific Reports, 2017, 7, 5259.	1.6	39
30	Synthesis of reduced-size gold nanostars and internalization in SH-SY5Y cells. Journal of Colloid and Interface Science, 2017, 505, 1055-1064.	5.0	16
31	$\hat{1}$ /4MAPPS: a novel phasor approach to second harmonic analysis for in vitro-in vivo investigation of collagen microstructure. Scientific Reports, 2017, 7, 17468.	1.6	21
32	Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos. Journal of Biomedical Optics, 2017, 22, 1.	1.4	2
33	Scanless nonlinear optical microscope for image reconstruction and space-time correlation analysis. Proceedings of SPIE, 2017, , .	0.8	0
34	Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability. Beilstein Journal of Nanotechnology, 2016, 7, 1480-1485.	1.5	7
35	Fabrication of Inkjet-Printed Gold Nanostar Patterns with Photothermal Properties on Paper Substrate. ACS Applied Materials & Interfaces, 2016, 8, 9909-9916.	4.0	41
36	Gold nanocages for imaging and therapy of prostate cancer cells. Proceedings of SPIE, 2016, , .	0.8	0

3

#	Article	IF	Citations
37	k-space image correlation to probe the intracellular dynamics of gold nanoparticles. Journal of Instrumentation, 2016, 11, C04018-C04018.	0.5	O
38	Hands-on Fourier analysis by means of far-field diffraction. European Journal of Physics, 2016, 37, 065701.	0.3	3
39	Theranostic Nanocages for Imaging and Photothermal Therapy of Prostate Cancer Cells by Active Targeting of Neuropeptide-Y Receptor. Bioconjugate Chemistry, 2016, 27, 2911-2922.	1.8	24
40	Prolonged contact with dendritic cells turns lymph nodeâ€resident <scp>NK</scp> cells into antiâ€tumor effectors. EMBO Molecular Medicine, 2016, 8, 1039-1051.	3.3	30
41	Image Cross-Correlation Analysis of Time Varying Flows. Analytical Chemistry, 2016, 88, 7115-7122.	3.2	9
42	Photothermal effect of gold nanostars inkjet-printed on coated paper substrate under near-infrared irradiation. , $2016, , .$		2
43	An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation. Biophysical Journal, 2015, 109, 2246-2258.	0.2	12
44	Gold nanostars co-coated with the Cu(<scp>ii</scp>) complex of a tetraazamacrocyclic ligand. Dalton Transactions, 2015, 44, 5652-5661.	1.6	11
45	Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells. Journal of Inorganic Biochemistry, 2015, 151, 123-131.	1.5	14
46	Gold Nanostars. SpringerBriefs in Materials, 2015, , .	0.1	26
47	Monolayers of gold nanostars with two near-IR LSPRs capable of additive photothermal response. Chemical Communications, 2015, 51, 12928-12930.	2.2	35
48	Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. Langmuir, 2015, 31, 8081-8091.	1.6	84
49	Toxicity Evaluation of a New Zn-Doped CuO Nanocomposite With Highly Effective Antibacterial Properties. Toxicological Sciences, 2015, 146, 16-30.	1.4	28
50	Fluorescence cross-correlation spectroscopy for time dependent flows: a numerical investigation. Proceedings of SPIE, 2015, , .	0.8	0
51	High-throughput spatial light modulation two-photon microscopy for fast functional imaging. Neurophotonics, 2015, 2, 015005.	1.7	23
52	Physical Properties of Gold Nanostars. SpringerBriefs in Materials, 2015, , 25-42.	0.1	5
53	Applications of Gold Nanostars: Nanosensing, Thermal Therapy, Delivery Systems. SpringerBriefs in Materials, 2015, , 43-59.	0.1	4
54	Interactions of Gold Nanostars with Cells. SpringerBriefs in Materials, 2015, , 61-74.	0.1	0

#	Article	IF	CITATIONS
55	Single image correlation for blood flow mapping in complex vessel networks. Proceedings of SPIE, 2015, , .	0.8	0
56	The spatiotemporal organization of cerebellar network activity resolved by two-photon imaging of multiple single neurons. Frontiers in Cellular Neuroscience, 2014, 8, 92.	1.8	45
57	Gold nanostars for superficial diseases: a promising tool for localized hyperthermia?. Nanomedicine, 2014, 9, 1-3.	1.7	194
58	Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chemical Communications, 2014, 50, 1969-1971.	2.2	111
59	Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos. Journal of Biomedical Optics, 2014, 19, 067007.	1.4	10
60	IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 138-146.	0.7	9
61	In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation. Scientific Reports, 2014, 4, 7341.	1.6	21
62	IL-15 cis Presentation Is Required for Optimal NK Cell Activation in Lipopolysaccharide-Mediated Inflammatory Conditions. Cell Reports, 2013, 4, 1235-1249.	2.9	66
63	Amphiphilic Copolymers Based on Poly[(hydroxyethyl)- <scp>d</scp> , <scp>l</scp> -aspartamide]: A Suitable Functional Coating for Biocompatible Gold Nanostars. Biomacromolecules, 2013, 14, 4260-4270.	2.6	20
64	Role of histidine 148 in stability and dynamics of a highly fluorescent GFP variant. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 770-779.	1.1	10
65	A Molecular Thermometer for Nanoparticles for Optical Hyperthermia. Nano Letters, 2013, 13, 2004-2010.	4.5	101
66	Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chemical Communications, 2013, 49, 6265.	2.2	104
67	Stimulated Emission Properties of Fluorophores by CW-STED Single Molecule Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 16405-16415.	1.2	14
68	Structured illumination fluorescence correlation spectroscopy for velocimetry in Zebrafish embryos. , 2013, , .		0
69	Dynamic Investigation of Interaction of Biocompatible Iron Oxide Nanoparticles with Epithelial Cells for Biomedical Applications. Journal of Biomedical Nanotechnology, 2013, 9, 1556-1569.	0.5	8
70	Modeling Leukocyte-Leukocyte Non-Contact Interactions in a Lymph Node. PLoS ONE, 2013, 8, e76756.	1.1	0
71	Gold Branched Nanoparticles for Cellular Treatments. Journal of Physical Chemistry C, 2012, 116, 18407-18418.	1.5	46
72	Nano-sized CuO, TiO ₂ and ZnO affect <i>Xenopus laevis</i> development. Nanotoxicology, 2012, 6, 381-398.	1.6	78

#	Article	IF	Citations
73	Does carbon nanopowder threaten amphibian development?. Carbon, 2012, 50, 4607-4618.	5.4	20
74	Biophysical Characterization of Met-G-CSF: Effects of Different Site-Specific Mono-Pegylations on Protein Stability and Aggregation. PLoS ONE, 2012, 7, e42511.	1.1	29
75	Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant. Chemical Communications, 2011, 47, 1315-1317.	2.2	82
76	Diffusion–Photodynamics Coupling in Fluorescence Correlation Spectroscopy Studies of Photoswitchable Green Fluorescent Proteins: An Analytical and Simulative Study. Journal of Physical Chemistry B, 2011, 115, 10311-10321.	1.2	2
77	Effect of the point mutation H148G on GFPmut2 unfolding kinetics by fluorescence spectroscopy. Biophysical Chemistry, 2011, 157, 24-32.	1.5	3
78	A biophysical model of intracellular distribution and perinuclear accumulation of particulate matter. Biophysical Chemistry, 2011, 158, 134-140.	1.5	10
79	Green Fluorescent Protein Photodynamics as a Tool for Fluorescence Correlative Studies and Applications. Springer Series on Fluorescence, 2011, , 35-55.	0.8	0
80	In Vitro–In Vivo Fluctuation Spectroscopies. , 2011, , 165-181.		1
81	In-vitro and in-vivo detection of p53 by fluorescence lifetime on a hybrid FITC-gold nanosensor. , 2010, , .		2
82	Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells. Proceedings of SPIE, 2010, , .	0.8	0
83	SLN As Vehicle For A Model Drug: A Biophysical Study. , 2010, , .		0
84	Photoinduced Millisecond Switching Kinetics in the GFPMut2 E222Q Mutant. Journal of Physical Chemistry B, 2010, 114, 4664-4677.	1.2	12
85	Accumulative Difference Image Protocol for Particle Tracking in Fluorescence Microscopy Tested in Mouse Lymphonodes. PLoS ONE, 2010, 5, e12216.	1.1	5
86	p53 Detection by Fluorescence Lifetime on a Hybrid Fluorescein Isothiocyanate Gold Nanosensor. Journal of Biomedical Nanotechnology, 2009, 5, 683-691.	0.5	12
87	CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature, 2009, 460, 264-268.	13.7	279
88	Protein watching. Nature Photonics, 2009, 3, 81-82.	15.6	2
89	Excited-State Lifetime Assay for Protein Detection on Gold Colloidsâ''Fluorophore Complexes. Journal of Physical Chemistry C, 2009, 113, 2722-2730.	1.5	21
90	<l>A Special Issue on</l> Nano- and Micro-Technologies for Biological Targeting, Tracking, Imaging and Sensing. Journal of Biomedical Nanotechnology, 2009, 5, 611-613.	0.5	1

#	Article	IF	Citations
91	Image filtering for two-photon deep imaging of lymphonodes. European Biophysics Journal, 2008, 37, 979-987.	1.2	20
92	Micelles as Containers for Selfâ€Assembled Nanodevices: A Fluorescent Sensor for Lipophilicity. ChemPhysChem, 2008, 9, 1729-1737.	1.0	18
93	Structural stability of green fluorescent proteins entrapped in polyelectrolyte nanocapsules. Journal of Biophotonics, 2008, 1, 310-319.	1.1	4
94	Protonation and Conformational Dynamics of GFP Mutants by Two-Photon Excitation Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 8806-8814.	1.2	25
95	Three-dimensional cell organization leads to almost immediate HRE activity as demonstrated by molecular imaging of MG-63 spheroids using two-photon excitation microscopy. FEBS Letters, 2007, 581, 719-726.	1.3	20
96	Voltage Regulation of Fluorescence Emission of Single Dyes Bound to Gold Nanoparticles. Nano Letters, 2007, 7, 1070-1075.	4.5	8
97	GFP-mut2 Proteins in Trehalose-Water Matrixes: Spatially Heterogeneous Protein-Water-Sugar Structures. Biophysical Journal, 2007, 93, 284-293.	0.2	10
98	Evidence of Discrete Substates and Unfolding Pathways in Green Fluorescent Protein. Biophysical Journal, 2007, 92, 1724-1731.	0.2	16
99	Voltage regulation of single green fluorescent protein mutants. Biophysical Chemistry, 2007, 125, 368-374.	1.5	6
100	Environment effects on the oscillatory unfolding kinetics of GFP. European Biophysics Journal, 2007, 36, 795-803.	1.2	5
101	Quenching and Blinking of Fluorescence of a Single Dye Molecule Bound to Gold Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 16491-16498.	1.2	85
102	Photobleaching. , 2006, , 690-702.		57
103	Enhanced Green Fluorescent Protein (GFP) fluorescence after polyelectrolyte caging. Optics Express, 2006, 14, 9815.	1.7	9
104	Unfolding time distribution of GFP by single molecule fluorescence spectroscopy. European Biophysics Journal, 2006, 35, 663-674.	1.2	7
105	Dimethyl-pepep: a DNA probe in two-photon excitation cellular imaging. Biophysical Chemistry, 2005, 114, 35-41.	1.5	25
106	Selective Fluorescence Recovery after Bleaching of Single E2GFP Proteins Induced by Two-Photon Excitation. ChemPhysChem, 2005, 6, 328-335.	1.0	20
107	Pre-Unfolding Resonant Oscillations of Single Green Fluorescent Protein Molecules. Science, 2005, 309, 1096-1100.	6.0	50
108	Two-photon fluorescence cross-correlation spectroscopy as a potential tool for high-throughput screening of DNA repair activity. Nucleic Acids Research, 2005, 33, e165-e165.	6.5	15

#	Article	IF	CITATIONS
109	Photon Moment Analysis in Cells in the Presence of Photo-Bleaching. Applied Spectroscopy, 2005, 59, 227-236.	1.2	7
110	Improvement of a FRET-based Indicator for cAMP by Linker Design and Stabilization of Donor–Acceptor Interaction. Journal of Molecular Biology, 2005, 354, 546-555.	2.0	67
111	Unfolding of Green Fluorescent Protein mut2 in wet nanoporous silica gels. Protein Science, 2005, 14, 1125-1133.	3.1	57
112	Tracking Unfolding and Refolding of Single GFPmut2 Molecules. Biophysical Journal, 2005, 89, 2033-2045.	0.2	31
113	Two-photon fluorescence excitation and related techniques in biological microscopy. Quarterly Reviews of Biophysics, 2005, 38, 97-166.	2.4	276
114	From Microscopy to Nanoscopy: How to Get and Read Optical Data at Single Molecule Level Using Confocal and Two-Photon Excitation Microscopy., 2005,, 187-207.		0
115	Multiphoton switching dynamics of single green fluorescent proteins. Physical Review E, 2004, 70, 030901.	0.8	26
116	High sensitivity optical microscope for single molecule spectroscopy studies. Review of Scientific Instruments, 2004, 75, 2746-2751.	0.6	18
117	Notes on theory and experimental conditions behind two-photon excitation microscopy. Microscopy Research and Technique, 2004, 63, 12-17.	1.2	16
118	Single molecule spectroscopic characterization of GFP-mut2 mutant for two-photon microscopy applications. Microscopy Research and Technique, 2004, 65, 186-193.	1.2	17
119	Aggregation properties of a HPMA-camptothecin copolymer in isotonic solutions. Biophysical Chemistry, 2004, 110, 281-295.	1.5	7
120	Fluorescence Anisotropy in the Frequency Domain by an Optical Microscope. Applied Spectroscopy, 2004, 58, 160-165.	1.2	8
121	Scanning algorithms in high-sensitivity two-photon excitation microscopy for single-molecule investigations., 2004, 5323, 319.		0
122	Measurement of the laser pulse width on the microscope objective plane by modulated autocorrelation method. Journal of Microscopy, 2003, 210, 149-157.	0.8	22
123	Two-Photon Photolysis of 2-Nitrobenzaldehyde Monitored by Fluorescent-Labeled Nanocapsules. Journal of Physical Chemistry B, 2003, 107, 11008-11012.	1.2	17
124	Two-Photon Thermal Bleaching of Single Fluorescent Molecules. Biophysical Journal, 2003, 84, 588-598.	0.2	60
125	Design and synthesis of new functional polymers for nonlinear optical applications. Synthetic Metals, 2003, 139, 629-632.	2.1	15
126	Two-photon interactions at single fluorescent molecule level. Journal of Biomedical Optics, 2003, 8, 391.	1.4	13

#	Article	IF	CITATIONS
127	Single molecule photodynamics by means of one- and two-photon approach. Journal Physics D: Applied Physics, 2003, 36, 1682-1688.	1.3	14
128	New two-photon excitation chromophores for cellular imaging. , 2003, , .		1
129	Confocal microscopy: an experimental set up for biomolecule structure investigation based on dynamical fluorescence spectroscopy. , 2003, , .		0
130	Novel efficient and stable heteroaromatic two-photon absorbing dyes., 2003,,.		6
131	Thermal bleaching in single fluorescent molecules under two-photon excitation regime. , 2003, , .		0
132	Response of living cells to nanostructured polyelectrolyte matrices studied by means of 1-, 2-photon excitation microscopy. , 2003, , .		0
133	Two-photon excitation microscopy. Advances in Imaging and Electron Physics, 2003, , 195-XII.	0.1	14
134	Exciton interactions in oligophenyl nanoaggregates and single crystals. Journal of Chemical Physics, 2002, 117, 4517-4525.	1.2	16
135	Trapped Brownian Motion in Single- and Two-Photon Excitation Fluorescence Correlation Experiments. Journal of Physical Chemistry B, 2002, 106, 2508-2519.	1.2	52
136	Effect of a trapping force on a photon-counting histogram. Applied Optics, 2002, 41, 593.	2.1	1
137	Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels. Protein Science, 2002, 11, 1152-1161.	3.1	61
138	Two-photon microscopy and spectroscopy based on a compact confocal scanning head. Journal of Biomedical Optics, 2001, 6, 300.	1.4	32
139	Two-Photon Fluorescence Polarization Anisotropy Decay on Highly Diluted Solutions by Phase Fluorometry. Applied Spectroscopy, 2001, 55, 311-317.	1.2	12
140	Molecular Heterogeneity of O-Acetylserine Sulfhydrylase by Two-Photon Excited Fluorescence Fluctuation Spectroscopy. Biophysical Journal, 2001, 80, 1973-1985.	0.2	19
141	Combined confocal and spectroscopic TPE architecture for the identification of single fluorescent molecules. , 2001, , .		0
142	Rotational dynamics of curved DNA fragments studied by fluorescence polarization anisotropy. European Biophysics Journal, 2001, 29, 597-606.	1.2	16
143	Brownian dynamics simulations of fluorescence fluctuation spectroscopy. European Biophysics Journal, 2001, 30, 129-139.	1.2	4
144	Single molecule studies by means of the two-photon fluorescence distribution. Microscopy Research and Technique, 2001, 55, 359-364.	1.2	34

#	Article	IF	Citations
145	Role of Pyridoxal 5′-Phosphate in the Structural Stabilization of O-Acetylserine Sulfhydrylase. Journal of Biological Chemistry, 2000, 275, 40244-40251.	1.6	35
146	Fluorescence Excitation Volume in Two-Photon Microscopy by Autocorrelation Spectroscopy and Photon Counting Histogram. Applied Spectroscopy, 2000, 54, 1084-1090.	1.2	15
147	Simple method for online correction of laser fluctuations in correlation measurements. Review of Scientific Instruments, 2000, 71, 4677.	0.6	1
148	Short-Range Interactions of Globular Proteins at High Ionic Strengths. Macromolecules, 2000, 33, 8663-8670.	2.2	51
149	Applications of fluctuation spectroscopy to biomolecules. Rivista Del Nuovo Cimento, 2000, 23, 1-37.	2.0	0
150	Polyion character of globular proteins detected by translational and rotational diffusion. Physical Review E, 1999, 60, 2148-2153.	0.8	5
151	Conformation of interacting lysozyme by polarized and depolarized light scattering. Journal of Chemical Physics, 1999, 110, 2297-2304.	1.2	25
152	Study of flexible joints and permanent bends in DNA fragments by brownian dynamics simulations. Theoretical Chemistry Accounts, 1999, 101, 126-130.	0.5	0
153	Salt-Induced Association of \hat{l}^2 -Lactoglobulin by Light and X-ray Scattering. Macromolecules, 1999, 32, 6128-6138.	2.2	57
154	Fractional Stokesâ^'Einstein Relationship in Biological Colloids:Â Role of Mixed Stickâ^'Slip Boundary Conditions. Journal of Physical Chemistry B, 1999, 103, 1746-1751.	1.2	13
155	Photon cross-correlation spectroscopy to 10-ns resolution. Applied Optics, 1999, 38, 2059.	2.1	16
156	Triple helix DNA oligomer melting measured by fluorescence polarization anisotropy. European Biophysics Journal, 1998, 27, 137-146.	1.2	15
157	Enhanced Flexibility of a Bulged DNA Fragment from Fluorescence Anisotropy and Brownian Dynamics. Macromolecules, 1998, 31, 695-702.	2.2	6
158	Photon correlation spectroscopy of interacting and dissociating hemoglobin. Journal of Chemical Physics, 1997, 106, 8427-8435.	1.2	21
159	A Brownian dynamics model for the chromatin fiber. Bioinformatics, 1997, 13, 271-279.	1.8	13
160	Role of Ionic Strength on Hemoglobin Interparticle Interactions and Subunit Dissociation from Light Scattering. Macromolecules, 1997, 30, 7849-7855.	2.2	12
161	Salt effects on the structure and internal dynamics of superhelical DNAs studied by light scattering and Brownian dynamics. Biophysical Journal, 1997, 73, 2674-2687.	0.2	58
162	Rotational diffusion of flexible DNA fragments by modulated fluorescence anisotropy. Journal of Luminescence, 1997, 72-74, 585-586.	1.5	3

#	Article	IF	Citations
163	Brownian dynamics simulations of supercoiled DNA with bent sequences. Biophysical Journal, 1996, 71, 955-971.	0.2	77
164	Dynamic light scattering from small particles: expected accuracy in hemoglobin data reduction. Applied Optics, 1996, 35, 3763.	2.1	11
165	Torsional-bending infinitesimal dynamics of a DNA chain. , 1996, 38, 801-811.		8
166	Diffusional spinning as a probe of DNA fragments conformation. Journal of Chemical Physics, 1996, 104, 6058-6065.	1.2	6
167	Rotational diffusion and internal motions of circular DNA. I. Polarized photon correlation spectroscopy. Journal of Chemical Physics, 1996, 104, 6009-6019.	1.2	12
168	Rotational diffusion and internal motions of circular DNA. II. Depolarized photon correlation spectroscopy. Journal of Chemical Physics, 1996, 104, 6020-6026.	1.2	10
169	Conformation of short DNA fragments by modulated fluorescence polarization anisotropy. Biopolymers, 1995, 36, 211-225.	1.2	35
170	Influence of ligands on the fluorescence polarisation anisotropy of ethidium bound to DNA. Biophysical Chemistry, 1995, 53, 227-239.	1.5	6
171	Kinetics of DNA supercoiling studied by Brownian dynamics simulation. Biopolymers, 1994, 34, 415-433.	1.2	146
172	Ten microseconds in the life of a superhelix. Journal of Mathematical Chemistry, 1993, 13, 33-43.	0.7	6
173	Effect of repeated insertions of curved sequences in DNA plasmids: a light-scattering study. , 1993, 1922, 332.		O
174	Calculating hydrodynamic properties of DNA through a second-order Brownian dynamics algorithm. Macromolecules, 1992, 25, 769-775.	2.2	47
175	Light scattering of DNA plasmids containing repeated curved insertions: Anomalous compaction. Biophysical Chemistry, 1992, 45, 101-108.	1.5	9
176	DNA torsional dynamics by multifrequency phase fluorometry. Biopolymers, 1992, 32, 1447-1459.	1.2	18
177	Calculating hydrodynamic properties of DNA through a second-order Brownian dynamics algorithm. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1991, 88, 2561-2566.	0.2	2
178	Conformation of intercalated DNA plasmids investigated by circular dichroism and dynamic light scattering. Biophysical Chemistry, 1990, 38, 201-211.	1.5	10
179	Dynamic light scattering of DNA: Role of the internal motion. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1989, 11, 745-759.	0.4	5
180	Dynamic light scattering from DNA plasmids: Diffusional internal motion. Journal of Molecular Liquids, 1989, 41, 327-345.	2.3	9

#	Article	IF	CITATIONS
181	Role of solvation on dye fluorescence. Journal of Luminescence, 1988, 40-41, 274-275.	1.5	O
182	Solvation thermodynamics of ethidium bromide in mixed solvents. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 979.	1.0	7