
Guillaume Fleury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces. Journal of Colloid and Interface Science, 2022, 609, 375-383.	5.0	4
2	Reducing the crystallinity of PCL chains by copolymerization with substituted δ(ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polymer Chemistry, 2022, 13, 2201-2214.	1.9	6
3	Engineering a Robust Flat Band in III–V Semiconductor Heterostructures. Nano Letters, 2021, 21, 680-685.	4.5	19
4	PEDOT:Tos electronic and thermoelectric properties: lessons from two polymerization processes. Journal of Materials Chemistry C, 2021, 9, 7417-7425.	2.7	10
5	Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-ï‡ Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 11224-11236.	4.0	10
6	Precise Synthesis and Thin Film Self-Assembly of PLLA-b-PS Bottlebrush Block Copolymers. Molecules, 2021, 26, 1412.	1.7	8
7	Block Copolymer Directed Metamaterials and Metasurfaces for Novel Optical Devices. Advanced Optical Materials, 2021, 9, 2100175.	3.6	47
8	A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Materials Today Physics, 2021, 18, 100402.	2.9	108
9	Dry-Etching Processes for High-Aspect-Ratio Features with Sub-10 nm Resolution High-χ Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 49184-49193.	4.0	7
10	Electrocaloric Enhancement Induced by Cocrystallization of Vinylidene Difluoride-Based Polymer Blends. ACS Macro Letters, 2021, 10, 1555-1562.	2.3	5
11	Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules, 2021, 22, 4956-4966.	2.6	16
12	Multifunctional Top-Coats Strategy for DSA of High-χ Block Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 11-16.	0.1	2
13	Low-temperature amino-based catalyst activation for on-demand polyurethane synthesis. Polymer Journal, 2020, 52, 45-49.	1.3	1
14	Nonâ€Native Block Copolymer Thin Film Nanostructures Derived from Iterative Selfâ€Assembly Processes. Advanced Materials Interfaces, 2020, 7, 1901747.	1.9	17
15	Optical Alignment of Si-Containing Nanodomains Formed by Photoresponsive Amorphous Block Copolymer Thin Films. Macromolecules, 2020, 53, 68-77.	2.2	9
16	Rapid Self-Assembly and Sequential Infiltration Synthesis of High χ Fluorine-Containing Block Copolymers. Macromolecules, 2020, 53, 6246-6254.	2.2	10
17	Large area Al ₂ 0 ₃ –Au raspberry-like nanoclusters from iterative block-copolymer self-assembly. RSC Advances, 2020, 10, 41088-41097.	1.7	5
18	Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm). Langmuir, 2020, 36, 13872-13880.	1.6	14

#	Article	IF	CITATIONS
19	Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today, 2020, 35, 100936.	6.2	134
20	Cyan Ni _{1–<i>x</i>} Al _{2+2<i>x</i>/3} â−i _{<i>x</i>/3} O ₄ Single-Phase Pigment Synthesis and Modification for Electrophoretic Ink Formulation. ACS Omega, 2020, 5, 18651-18661.	1.6	3
21	Engineering block copolymer materials for patterning ultra-low dimensions. Molecular Systems Design and Engineering, 2020, 5, 1642-1657.	1.7	12
22	Formation and optical response of self-assembled gold nanoparticle lattices on oxidized silicon synthesized using block copolymers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	5
23	Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial. Journal of Applied Physics, 2020, 128, 204303.	1.1	0
24	Periodic Bicontinuous Structures Formed on the Top Surface of Asymmetric Triblock Terpolymer Thick Films. ACS Macro Letters, 2019, 8, 923-930.	2.3	6
25	Ferroelectricity in Undoped ZnO Nanorods. Journal of Physical Chemistry C, 2019, 123, 29436-29444.	1.5	7
26	High refractive index in low metal content nanoplasmonic surfaces from self-assembled block copolymer thin films. Nanoscale Advances, 2019, 1, 849-857.	2.2	14
27	Bicontinuous Network Nanostructure with Tunable Thickness Formed on Asymmetric Triblock Terpolymer Thick Films. Macromolecules, 2019, 52, 4413-4420.	2.2	10
28	Micellarâ€Mediated Block Copolymer Ordering Dynamics Revealed by In Situ Grazing Incidence Smallâ€Angle Xâ€Ray Scattering during Spin Coating. Advanced Functional Materials, 2019, 29, 1806741.	7.8	13
29	Nanoscale Archimedean Tilings Formed by 3â€Miktoarm Star Terpolymer Thin Films. Macromolecular Rapid Communications, 2019, 40, e1800860.	2.0	11
30	Metallic Nanodot Patterns with Unique Symmetries Templated from ABC Triblock Terpolymer Networks. Macromolecular Rapid Communications, 2018, 39, e1700754.	2.0	12
31	Surface relief gratings formed by microphase-separated disperse red 1 acrylate-containing diblock copolymers. Polymer, 2018, 137, 378-384.	1.8	6
32	Core–Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films. Macromolecular Rapid Communications, 2018, 39, e1800043.	2.0	6
33	Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application. Applied Surface Science, 2018, 428, 870-876.	3.1	12
34	Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Organic Electronics, 2018, 52, 335-341.	1.4	73
35	Microphase Separation of Polybutyrolactone-Based Block Copolymers with Sub-20 nm Domains. Macromolecules, 2018, 51, 6534-6541.	2.2	10
36	Graphoepitaxy integration and pattern transfer of lamellar silicon-containing high-chi block copolymers. , 2018, , .		1

3

#	Article	IF	CITATIONS
37	Photoactive Donor–Acceptor Composite Nanoparticles Dispersed in Water. Langmuir, 2017, 33, 1507-1515.	1.6	16
38	Highly Ordered Nanoring Arrays Formed by Templated Siâ€Containing Triblock Terpolymer Thin Films. Small, 2017, 13, 1603184.	5.2	19
39	How To Choose Polyelectrolytes for Aqueous Dispersions of Conducting PEDOT Complexes. Macromolecules, 2017, 50, 1959-1969.	2.2	45
40	Templated Subâ€100â€nmâ€Thick Doubleâ€Gyroid Structure from Siâ€Containing Block Copolymer Thin Films. Small, 2017, 13, 1603777.	5.2	16
41	Impact of the architecture on the crystallization kinetics of poly($\hat{l}\mu$ -caprolactone)/poly(trimethylene) Tj ETQq1 1 0	.784314 ı 2.6	rgBT /Overlo
42	Straightforward Integration Flow of a Silicon-Containing Block Copolymer for Line–Space Patterning. ACS Applied Materials & Interfaces, 2017, 9, 43043-43050.	4.0	19
43	Recent Achievements in Sub-10 nm DSA Lithography for Line/Space Patterning. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 69-75.	0.1	5
44	Anisotropic Lithium Ion Conductivity in Singleâ€lon Diblock Copolymer Electrolyte Thin Films. Macromolecular Rapid Communications, 2016, 37, 221-226.	2.0	7
45	Archimedean Tilings and Hierarchical Lamellar Morphology Formed by Semicrystalline Miktoarm Star Terpolymer Thin Films. ACS Nano, 2016, 10, 4055-4061.	7.3	21
46	Design of new block copolymer systems to achieve thick films with defect-free structures for applications of DSA into lithographic large nodes. Proceedings of SPIE, 2016, , .	0.8	0
47	Structurally-driven Enhancement of Thermoelectric Properties within Poly(3,4-ethylenedioxythiophene) thin Films. Scientific Reports, 2016, 6, 30501.	1.6	67
48	Contact hole shrink and multiplication by directed self-assembly of block copolymers: from material to integration. Materials Research Society Symposia Proceedings, 2015, 1750, 1.	0.1	1
49	Laterally Ordered Sub-10 nm Features Obtained From Directed Self-Assembly of Si-Containing Block Copolymer Thin Films. Small, 2015, 11, 6377-6383.	5.2	25
50	Template affinity role in CH shrink by DSA planarization. Proceedings of SPIE, 2015, , .	0.8	9
51	Blending approaches to enhance structural order in block-copolymer's self-assemblies. , 2015, , .		2
52	Development and integration of systems with enhanced resolutions based on Si-containing block copolymers for line space applications. Proceedings of SPIE, 2015, , .	0.8	1
53	Optimization of Magnetic Inks Made of <i>L</i> 1 ₀ -Ordered FePt Nanoparticles and Polystyrene- <i>block</i> -Poly(ethylene oxide) Copolymers. Langmuir, 2015, 31, 6675-6680.	1.6	10
54	Synthesis of a Conductive Copolymer and Phase Diagram of Its Suspension with Single-Walled Carbon Nanotubes by Microfluidic Technology. Macromolecules, 2015, 48, 7473-7480.	2.2	20

#	Article	IF	CITATIONS
55	Subâ€10 nm Features Obtained from Directed Selfâ€Assembly of Semicrystalline Polycarbosilaneâ€Based Block Copolymer Thin Films. Advanced Materials, 2015, 27, 261-265.	11.1	63
56	300mm pilot line DSA contact hole process stability. Proceedings of SPIE, 2014, , .	0.8	14
57	Contact holes patterning by directed self-assembly of block copolymers: What would be the Bossung plot?. , 2014, , .		4
58	Precision Synthesis of Poly(Ionic Liquid)â€Based Block Copolymers by Cobaltâ€Mediated Radical Polymerization and Preliminary Study of Their Selfâ€Assembling Properties. Macromolecular Rapid Communications, 2014, 35, 422-430.	2.0	44
59	Self-assembly of high-resolutions PS-b-PMMA block-copolymers: processes capabilities and integration on 300mm track. Proceedings of SPIE, 2014, , .	0.8	6
60	Self-assembly of Si-containing block copolymers with high-segregation strength: toward sub-10nm features in directed self-assembly. Proceedings of SPIE, 2014, , .	0.8	0
61	Improvements of self-assembly properties via homopolymer addition or block-copolymer blends. Proceedings of SPIE, 2014, , .	0.8	2
62	Probing Self-Assembly of Cylindrical Morphology Block Copolymer Using in Situ and ex Situ Grazing Incidence Small-Angle X-ray Scattering: The Attractive Case of Graphoepitaxy. Macromolecules, 2014, 47, 7221-7229.	2.2	22
63	Scaling-down lithographic dimensions with block-copolymer materials: 10-nm-sized features with poly(styrene)- <i>block</i> -poly(methylmethacrylate). Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 031102.	1.0	25
64	Hierarchical assembly of magnetic L10-ordered FePt nanoparticles in block copolymer thin films. Journal of Materials Chemistry C, 2013, 1, 1317-1321.	2.7	17
65	Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer Incorporation into P3HT:PCBM Blends. Macromolecules, 2013, 46, 3015-3024.	2.2	38
66	Phase separation-driven stratification in conventional and inverted P3HT:PCBM organic solar cells. Organic Electronics, 2013, 14, 1249-1254.	1.4	31
67	Nanoscale Block Copolymer Ordering Induced by Visible Interferometric Micropatterning: A Route towards Large Scale Block Copolymer 2D Crystals. Advanced Materials, 2013, 25, 213-217.	11.1	40
68	Scaling-down lithographic dimensions with block-copolymer materials: 10nmsized features with PS- <i>b</i> -PMMA. Proceedings of SPIE, 2013, , .	0.8	5
69	Pattern density multiplication by direct self assembly of block copolymers: toward 300mm CMOS requirements. Proceedings of SPIE, 2012, , .	0.8	16
70	Design of Wellâ€Defined Monofunctionalized Poly(3â€hexylthiophene)s: Toward the Synthesis of Semiconducting Graft Copolymers. Macromolecular Rapid Communications, 2012, 33, 703-709.	2.0	20
71	Block Copolymer as a Nanostructuring Agent for Highâ€Efficiency and Annealingâ€Free Bulk Heterojunction Organic Solar Cells. Advanced Materials, 2012, 24, 2196-2201.	11.1	71
72	Optimization of the Bulk Heterojunction Composition for Enhanced Photovoltaic Properties: Correlation between the Molecular Weight of the Semiconducting Polymer and Device Performance. Journal of Physical Chemistry B, 2011, 115, 12717-12727.	1.2	55

#	Article	IF	CITATIONS
73	Optimization of block copolymer self-assembly through graphoepitaxy: A defectivity study. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	29
74	Hexagonal-to-Cubic Phase Transformation in Composite Thin Films Induced by FePt Nanoparticles Located at PS/PEO Interfaces. Langmuir, 2011, 27, 14481-14488.	1.6	25
75	Study and optimization of the parameters governing the block copolymer self-assembly: toward a future integration in lithographic process. Proceedings of SPIE, 2011, , .	0.8	3
76	Synthesis and Characterization of Elastomeric Heptablock Terpolymers Structured by Crystallization. Macromolecules, 2010, 43, 5295-5305.	2.2	26
77	Hierarchically structured bicontinuous polymeric microemulsions. Soft Matter, 2010, 6, 2751.	1.2	14
78	Structure and Properties of Hexa- and Undecablock Terpolymers with Hierarchical Molecular Architectures. Macromolecules, 2009, 42, 3598-3610.	2.2	53
79	The O52 network by molecular design: CECD tetrablock terpolymers. Soft Matter, 2009, 5, 1587.	1.2	16
80	Perpendicular Lamellae in Parallel Lamellae in a Hierarchical CECEC-P Hexablock Terpolymer. Macromolecules, 2009, 42, 1691-1694.	2.2	42
81	Structure and Mechanical Properties of an O ⁷⁰ (<i>Fddd</i>) Network-Forming Pentablock Terpolymer. Macromolecules, 2008, 41, 5809-5817.	2.2	34
82	Topological Polymer Networks with Sliding Cross-Link Points:  The "Sliding Gelsâ€: Relationship between Their Molecular Structure and the Viscoelastic as Well as the Swelling Properties. Macromolecules, 2007, 40, 535-543.	2.2	107
83	Unveiling the Sliding Motion in Topological Networks: Influence of the Swelling Solvent on the Relaxation Dynamics. Advanced Materials, 2006, 18, 2847-2851.	11.1	45
84	From high molecular weight precursor polyrotaxanes to supramolecular sliding networks. The â€~sliding gels'. Polymer, 2005, 46, 8494-8501.	1.8	85
85	Synthesis and characterization of high molecular weight polyrotaxanes: towards the control over a wide range of threaded α-cyclodextrins. Soft Matter, 2005, 1, 378.	1.2	84
86	Fourier Transform Rheology of Branched Polyethylene:Â Experiments and Models for Assessing the Macromolecular Architecture. Macromolecules, 2005, 38, 6492-6503.	2.2	75
87	Non Linear Rheology for Long Chain Branching characterization, comparison of two methodologies : Fourier Transform Rheology and Relaxation Rheologica Acta, 2004, 44, 174-187.	1.1	67