
## **Tobias Schreck**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553630/publications.pdf Version: 2024-02-01



TOBIAS SCHDECK

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | IRVINE: A Design Study on Analyzing Correlation Patterns of Electrical Engines. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 11-21.               | 4.4 | 20        |
| 2  | ManEx: The Visual Analysis of Measurements for the Assessment of Errors in Electrical Engines. IEEE<br>Computer Graphics and Applications, 2022, 42, 68-80.              | 1.2 | 0         |
| 3  | RfX: A Design Study for the Interactive Exploration of a Random Forest to Enhance Testing Procedures for Electrical Engines. Computer Graphics Forum, 2022, 41, 302-315. | 3.0 | 3         |
| 4  | Special Issue on Machine Learning Approaches in Big Data Visualization. IEEE Computer Graphics and Applications, 2022, 42, 39-40.                                        | 1.2 | 1         |
| 5  | Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 517-527.              | 4.4 | 7         |
| 6  | Visual Cascade Analytics of Large-scale Spatiotemporal Data. IEEE Transactions on Visualization and<br>Computer Graphics, 2021, PP, 1-1.                                 | 4.4 | 11        |
| 7  | Multiscale Visualization: A Structured Literature Analysis. IEEE Transactions on Visualization and Computer Graphics, 2021, PP, 1-1.                                     | 4.4 | 4         |
| 8  | Similarity Measures for Visual Comparison and Retrieval of Test Data in Aluminum Production. , 2021, ,                                                                   |     | 1         |
| 9  | A Benchmark Dataset for Repetitive Pattern Recognition on Textured 3D Surfaces. Computer Graphics<br>Forum, 2021, 40, 1-8.                                               | 3.0 | 2         |
| 10 | Visual Clustering Factors in Scatterplots. IEEE Computer Graphics and Applications, 2021, 41, 79-89.                                                                     | 1.2 | 8         |
| 11 | Visual Exploration of Anomalies in Cyclic Time Series Data with Matrix and Glyph Representations. Big<br>Data Research, 2021, 26, 100251.                                | 4.2 | 4         |
| 12 | A System for Collaborative Assembly Simulation and User Performance Analysis. , 2021, , .                                                                                |     | 0         |
| 13 | The Role of Interactive Visualization in Fostering Trust in AI. IEEE Computer Graphics and Applications, 2021, 41, 7-12.                                                 | 1.2 | 13        |
| 14 | Guide Me in Analysis: A Framework for Guidance Designers. Computer Graphics Forum, 2020, 39, 269-288.                                                                    | 3.0 | 17        |
| 15 | Augmenting Node‣ink Diagrams with Topographic Attribute Maps. Computer Graphics Forum, 2020, 39,<br>369-381.                                                             | 3.0 | 4         |
| 16 | Immersive analysis of user motion in VR applications. Visual Computer, 2020, 36, 1937-1949.                                                                              | 3.5 | 34        |
| 17 | A sketch-aided retrieval approach for incomplete 3D objects. Computers and Graphics, 2020, 87, 111-122.                                                                  | 2.5 | 8         |
| 18 | Interactive visual labelling versus active learning: an experimental comparison. Frontiers of<br>Information Technology and Electronic Engineering, 2020, 21, 524-535.   | 2.6 | 10        |

**TOBIAS SCHRECK** 

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Immersive Analytics of Anomalies in Multivariate Time Series Data with Proxy Interaction. , 2020, , .                                                                  |     | 3         |
| 20 | VIMA: Modeling and Visualization of High Dimensional Machine Sensor Data Leveraging Multiple<br>Sources of Domain Knowledge. , 2020, , .                               |     | 6         |
| 21 | dg2pix: Pixel-Based Visual Analysis of Dynamic Graphs. , 2020, , .                                                                                                     |     | 3         |
| 22 | Where to go: Computational and visual what-if analyses in soccer. Journal of Sports Sciences, 2019, 37, 2774-2782.                                                     | 2.0 | 7         |
| 23 | Human/machine/roboter: technologies for cognitive processes. Elektrotechnik Und<br>Informationstechnik, 2019, 136, 313-317.                                            | 1.1 | 4         |
| 24 | Extracting semantic knowledge from web context for multimedia IR: a taxonomy, survey and challenges. Multimedia Tools and Applications, 2018, 77, 13853-13889.         | 3.9 | 7         |
| 25 | Revealing the Invisible: Visual Analytics and Explanatory Storytelling for Advanced Team Sport<br>Analysis. , 2018, , .                                                |     | 13        |
| 26 | Guidance in the human–machine analytics process. Visual Informatics, 2018, 2, 166-180.                                                                                 | 4.4 | 56        |
| 27 | Quality Metrics for Information Visualization. Computer Graphics Forum, 2018, 37, 625-662.                                                                             | 3.0 | 86        |
| 28 | Feature-Based 3D Object Retrieval. , 2018, , 1467-1471.                                                                                                                |     | 0         |
| 29 | What Features Can Tell Us about Shape. IEEE Computer Graphics and Applications, 2017, 37, 82-87.                                                                       | 1.2 | 4         |
| 30 | Dynamic Visual Abstraction of Soccer Movement. Computer Graphics Forum, 2017, 36, 305-315.                                                                             | 3.0 | 33        |
| 31 | How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects.<br>Data, 2017, 2, 2.                                                     | 2.3 | 50        |
| 32 | Feature-Based 3D Object Retrieval. , 2017, , 1-5.                                                                                                                      |     | 1         |
| 33 | Analysis and Comparison of Feature-Based Patterns in Urban Street Networks. Communications in Computer and Information Science, 2017, , 287-309.                       | 0.5 | 1         |
| 34 | From game events to team tactics: Visual analysis of dangerous situations in multi-match data. , 2016, ,                                                               |     | 10        |
| 35 | Matrix Reordering Methods for Table and Network Visualization. Computer Graphics Forum, 2016, 35, 693-716.                                                             | 3.0 | 134       |
| 36 | Integrated visual analysis of patterns in time series and text data - Workflow and application to financial data analysis. Information Visualization, 2016, 15, 75-90. | 1.9 | 15        |

# ARTICLE IF CITATIONS Visual Soccer Analytics: Understanding the Characteristics of Collective Team Movement Based on Feature-Driven Analysis and Abstraction. ISPRS International Journal of Geo-Information, 2015, 4, 2159-2184. Empirical evaluation of dissimilarity measures for 3D object retrieval with application to 38 3 multi-feature retrieval., 2015,,. VisInfo: a digital library system for time series research data based on exploratory searchâ€"a 1.5 user-centered design approach. International Journal on Digital Libraries, 2015, 16, 37-59. User-drawn sketch-based 3D object retrievalusing sparse coding. Multimedia Tools and Applications, 40 3.9 4 2015, 74, 4707-4722. A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries. Computer Vision and Image Understanding, 2015, 131, 1-27. 42 Feature-driven visual analytics of soccer data., 2014,,. 43 Visual Analysis of Sets of Heterogeneous Matrices Using Projectionâ€Based Distance Functions and Semantic Zoom. Computer Graphics Forum, 2014, 33, 411-420. Using visual analytics to support decision making to solve the Kronos incident (VAST challenge 2014)., 44 1 2014,,. A comparison of methods for sketch-based 3D shape retrieval. Computer Vision and Image 4.7 Understanding, 2014, 119, 57-80. 46 Visual Analysis of Social Media Data. Computer, 2013, 46, 68-75. 1.1 62 Data-aware 3D partitioning for generic shape retrieval. Computers and Graphics, 2013, 37, 460-472. MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical 48 4.4 70 Aggregation. IEEE Transactions on Visualization and Computer Graphics, 2013, 19, 2257-2266. Relating interesting quantitative time series patterns with text events and text features., 2013,,. Content-based layouts for exploratory metadata search in scientific research data., 2012, , . 50 18 ClustNails: Visual analysis of subspace clusters. Tsinghua Science and Technology, 2012, 17, 419-428. 6.1 Preface to Special Issue on 3DOR 2011. Visual Computer, 2012, 28, 899-900. 52 3.5 0 Improving 3D similarity search by enhancing and combining 3D descriptors. Multimedia Tools and Applications, 2012, 58, 81-108.

**TOBIAS SCHRECK** 

4

54 Visual analytics of terrorist activities related to epidemics., 2011,,.

**TOBIAS SCHRECK** 

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interactive visual comparison of multiple trees. , 2011, , .                                                                                                                                    |     | 60        |
| 56 | Multiscale visual quality assessment for cluster analysis with self-organizing maps. Proceedings of SPIE, 2011, , .                                                                             | 0.8 | 3         |
| 57 | Visual Analysis of Large Graphs: Stateâ€ofâ€theâ€Art and Future Research Challenges. Computer Graphics<br>Forum, 2011, 30, 1719-1749.                                                           | 3.0 | 368       |
| 58 | Assisted Descriptor Selection Based on Visual Comparative Data Analysis. Computer Graphics Forum, 2011, 30, 891-900.                                                                            | 3.0 | 34        |
| 59 | Preface to special issue on 3DOR 2010. Visual Computer, 2011, 27, 949-950.                                                                                                                      | 3.5 | 0         |
| 60 | Retrieval and exploratory search in multivariate research data repositories using regressional features. , 2011, , .                                                                            |     | 15        |
| 61 | Techniques for Precision-Based Visual Analysis of Projected Data. Information Visualization, 2010, 9, 181-193.                                                                                  | 1.9 | 48        |
| 62 | Spaceâ€inâ€Time and Timeâ€inâ€Space Selfâ€Organizing Maps for Exploring Spatiotemporal Patterns. Computer<br>Graphics Forum, 2010, 29, 913-922.                                                 | 3.0 | 101       |
| 63 | Cluster correspondence views for enhanced analysis of SOM displays. , 2010, , .                                                                                                                 |     | 2         |
| 64 | Using space–time visual analytic methods for exploring the dynamics of ethnic groups' residential patterns. International Journal of Geographical Information Science, 2010, 24, 1481-1496.     | 4.8 | 6         |
| 65 | A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. Journal of Location Based Services, 2010, 4, 200-221.            | 1.9 | 27        |
| 66 | A Visual Digital Library Approach for Time-Oriented Scientific Primary Data. Lecture Notes in Computer Science, 2010, , 352-363.                                                                | 1.3 | 3         |
| 67 | Visual Cluster Analysis of Trajectory Data with Interactive Kohonen Maps. Information Visualization, 2009, 8, 14-29.                                                                            | 1.9 | 102       |
| 68 | Visual analysis of graphs with multiple connected components. , 2009, , .                                                                                                                       |     | 27        |
| 69 | Visual cluster analysis of trajectory data with interactive Kohonen Maps. , 2008, , .                                                                                                           |     | 39        |
| 70 | Visualizing Time-Dependent Data in Multivariate Hierarchic Plots - Design and Evaluation of an Economic Application. , 2008, , .                                                                |     | 14        |
| 71 | Trajectory-based visual analysis of large financial time series data. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2007, 9, 30-37. | 4.0 | 55        |
| 72 | Content-Based 3D Object Retrieval. IEEE Computer Graphics and Applications, 2007, 27, 22-27.                                                                                                    | 1.2 | 92        |

TOBIAS SCHRECK

| #  | Article                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | An experimental effectiveness comparison of methods for 3D similarity search. International Journal on Digital Libraries, 2006, 6, 39-54. | 1.5  | 41        |
| 74 | Feature-based similarity search in 3D object databases. ACM Computing Surveys, 2005, 37, 345-387.                                         | 23.0 | 332       |
| 75 | Automatic Selection and Combination of Descriptors for Effective 3D Similarity Search. , 0, , .                                           |      | 34        |
| 76 | An experimental comparison of feature-based 3D retrieval methods. , 0, , .                                                                |      | 20        |
| 77 | Using entropy impurity for improved 3D object similarity search. , 0, , .                                                                 |      | 22        |
| 78 | 2D Maps for Visual Analysis and Retrieval in Large Multi-Feature 3D Model Databases. , 0, , .                                             |      | 4         |
| 79 | Visual-Interactive Analysis With Self-Organizing Maps - Advances and Research Challenges. , 0, , .                                        |      | 4         |