
Maria Fernandez-Lobato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reuse of Immobilized <i>Komagataella phaffii</i> Cells for the Elimination of <scp>d</scp> -Glucose in Syrups of Bioactive Carbohydrates. ACS Food Science & Technology, 2022, 2, 682-690.	1.3	4
2	Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Applied Microbiology and Biotechnology, 2022, 106, 4617-4626.	1.7	5
3	Structure–Function Insights into the Fungal Endo-Chitinase Chit33 Depict its Mechanism on Chitinous Material. International Journal of Molecular Sciences, 2022, 23, 7599.	1.8	7
4	Engineering Saccharomyces cerevisiae for the one-step production of a functional sweetening mixture towards food applications. Food and Bioproducts Processing, 2022, , .	1.8	1
5	Aging in Male Wistar Rats Associates With Changes in Intestinal Microbiota, Gut Structure, and Cholecystokinin-Mediated Gut–Brain Axis Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1915-1921.	1.7	14
6	New insights into the molecular mechanism behind mannitol and erythritol fructosylation by β-fructofuranosidase from Schwanniomyces occidentalis. Scientific Reports, 2021, 11, 7158.	1.6	5
7	Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. Applied Sciences (Switzerland), 2021, 11, 3212.	1.3	27
8	The β-Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity. Catalysts, 2021, 11, 476.	1.6	4
9	Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Advances, 2021, 11, 5529-5536.	1.7	21
10	Enzymatic synthesis of novel fructosylated compounds by Ffase from <i>Schwanniomyces occidentalis</i> in green solvents. RSC Advances, 2021, 11, 24312-24319.	1.7	3
11	Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Computational and Structural Biotechnology Journal, 2021, 19, 5466-5478.	1.9	9
12	Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from <i>Geobacillus</i> sp.: Optimization and Chemical Characterization of Products. Industrial & Engineering Chemistry Research, 2021, 60, 18651-18659.	1.8	6
13	Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.7	784 21 14 rgB1	「 /@ verlock
14	Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars. Microbial Cell Factories, 2020, 19, 140.	1.9	11
15	A Three-Step Process for the Bioconversion of Whey Permeate into a Glucose-Free D-Tagatose Syrup. Catalysts, 2020, 10, 647.	1.6	19
16	Efficient production of isomelezitose by a glucosyltransferase activity in <i>Metschnikowia reukaufii</i> cell extracts. Microbial Biotechnology, 2019, 12, 1274-1285.	2.0	15
17	Tailored Enzymatic Synthesis of Chitooligosaccharides with Different Deacetylation Degrees and Their Anti-Inflammatory Activity. Catalysts, 2019, 9, 405.	1.6	29
18	Sterol Regulatory Element-Binding Protein (Sre1) Promotes the Synthesis of Carotenoids and Sterols in Xanthophyllomyces dendrorhous. Frontiers in Microbiology, 2019, 10, 586.	1.5	26

#	Article	IF	CITATIONS
19	Deciphering the molecular specificity of phenolic compounds as inhibitors or glycosyl acceptors of β-fructofuranosidase from Xanthophyllomyces dendrorhous. Scientific Reports, 2019, 9, 17441.	1.6	5
20	Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Applied Microbiology and Biotechnology, 2019, 103, 279-289.	1.7	17
21	Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatalysis and Biotransformation, 2018, 36, 57-67.	1.1	55
22	Fructosylation of Hydroxytyrosol by the βâ€Fructofuranosidase from Xanthophyllomyces dendrorhous : Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem, 2018, 10, 4878-4887.	1.8	14
23	Efficient conversion of chitosan into chitooligosaccharides by a chitosanolytic activity from Bacillus thuringiensis. Process Biochemistry, 2018, 73, 102-108.	1.8	22
24	Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase. Molecules, 2018, 23, 1271.	1.7	19
25	Immobilization of the Î ² -fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production. Catalysts, 2018, 8, 201.	1.6	18
26	Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microbial Cell Factories, 2018, 17, 47.	1.9	58
27	Isolation and Characterization of Extrachromosomal Double-Stranded RNA Elements from Carotenogenic Yeasts. Methods in Molecular Biology, 2018, 1852, 327-339.	0.4	0
28	Characterization of the biosynthetic gene cluster (ata) for the A201A aminonucleoside antibiotic from Saccharothrix mutabilis subsp. capreolus. Journal of Antibiotics, 2017, 70, 404-413.	1.0	10
29	The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production. PLoS ONE, 2016, 11, e0162838.	1.1	24
30	Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8–Tup1 involved in catabolic repression. Microbial Cell Factories, 2016, 15, 193.	1.9	17
31	Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. Journal of Biological Chemistry, 2016, 291, 6843-6857.	1.6	50
32	Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a β-fructofuranosidase showing high fructosyl-acceptor promiscuity. Applied Microbiology and Biotechnology, 2016, 100, 8769-8778.	1.7	16
33	Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous α-glucosidase with potential for prebiotics production. Applied Microbiology and Biotechnology, 2016, 100, 3125-3135.	1.7	20
34	Characterization of virus-like particles and identification of capsid proteins in Xanthophyllomyces dendrorhous. Virus Genes, 2015, 50, 253-259.	0.7	2
35	Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Applied Microbiology and Biotechnology, 2015, 99, 3459-3467.	1.7	31
36	Regioselective synthesis of neo-erlose by the β-fructofuranosidase from Xanthophyllomyces dendrorhous. Process Biochemistry, 2014, 49, 423-429.	1.8	18

#	Article	IF	CITATIONS
37	Production of fructooligosaccharides by mycelium-bound transfructosylation activity present in Cladosporium cladosporioides and Penicilium sizovae. Process Biochemistry, 2014, 49, 2174-2180.	1.8	36
38	Dried alginate-entrapped enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochemistry, 2013, 48, 677-682.	1.8	53
39	Assessment of Schwanniomyces occidentalis as a host for protein production using the wide-range Xplor®2 expression platform. Applied Microbiology and Biotechnology, 2013, 97, 4443-4456.	1.7	17
40	On the Enzyme Specificity for the Synthesis of Prebiotic Galactooligosaccharides. , 2013, , 23-39.		5
41	Synthesis of 6â€Kestose using an Efficient βâ€Fructofuranosidase Engineered by Directed Evolution. Advanced Synthesis and Catalysis, 2013, 355, 1698-1702.	2.1	17
42	Structural and Kinetic Insights Reveal That the Amino Acid Pair Gln-228/Asn-254 Modulates the Transfructosylating Specificity of Schwanniomyces occidentalis β-Fructofuranosidase, an Enzyme That Produces Prebiotics. Journal of Biological Chemistry, 2012, 287, 19674-19686.	1.6	39
43	Isolation and Characterization of Extrachromosomal Double-Stranded RNA Elements in Xanthophyllomyces dendrorhous. Methods in Molecular Biology, 2012, 898, 195-205.	0.4	1
44	Generation of Astaxanthin Mutants in Xanthophyllomyces dendrorhous Using a Double Recombination Method Based on Hygromycin Resistance. Methods in Molecular Biology, 2012, 898, 219-234.	0.4	8
45	Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technology, 2012, 109, 123-130.	4.8	61
46	Production of Galacto-oligosaccharides by the β-Galactosidase from Kluyveromyces lactis: Comparative Analysis of Permeabilized Cells versus Soluble Enzyme. Journal of Agricultural and Food Chemistry, 2011, 59, 10477-10484.	2.4	92
47	Screening β-Fructofuranosidases Mutant Libraries to Enhance the Transglycosylation Rates of β-(2→6) Fructooligosaccharides. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 730-738.	0.6	13
48	Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from <i>Xanthophyllomyces dendrorhous</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1441-1444.	0.7	6
49	Structural and Kinetic Analysis of Schwanniomyces occidentalis Invertase Reveals a New Oligomerization Pattern and the Role of Its Supplementary Domain in Substrate Binding. Journal of Biological Chemistry, 2010, 285, 13930-13941.	1.6	71
50	New Insights into the Fructosyltransferase Activity of <i>Schwanniomyces occidentalis</i> ² -Fructofuranosidase, Emerging from Nonconventional Codon Usage and Directed Mutation. Applied and Environmental Microbiology, 2010, 76, 7491-7499.	1.4	37
51	Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from <i>Schwanniomyces occidentalis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1162-1165.	0.7	7
52	Biochemical characterization of a β-fructofuranosidase from <i>Rhodotorula dairenensis</i> with transfructosylating activity. FEMS Yeast Research, 2009, 9, 768-773.	1.1	36
53	Molecular and Biochemical Characterization of a β-Fructofuranosidase from <i>Xanthophyllomyces dendrorhous</i> . Applied and Environmental Microbiology, 2009, 75, 1065-1073.	1.4	87
54	Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Journal of Biotechnology, 2007, 132, 75-81.	1.9	106

#	Article	IF	CITATIONS
55	Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xantophyllomyces dendrorhous. Process Biochemistry, 2007, 42, 1530-1536.	1.8	56
56	Thepur3gene from thepurcluster encodes a monophosphatase essential for puromycin biosynthesis inStreptomyces. FEBS Letters, 2006, 580, 1807-1811.	1.3	1
57	Purification and biochemical characterization of an α-glucosidase fromXanthophyllomyces dendrorhous. Yeast, 2006, 23, 117-125.	0.8	23
58	Thepur6gene of the puromycin biosynthetic gene cluster fromStreptomyces albonigerencodes a tyrosinyl-aminonucleoside synthetase. FEBS Letters, 2004, 577, 371-375.	1.3	9
59	Regulation of MSV and WDV virion-sense promoters by WDV nonstructural proteins: a role for their retinoblastoma protein-binding motifs. Virology, 2003, 306, 313-323.	1.1	20
60	Expression inEscherichia coliof a recombinant adenosine kinase fromSaccharomyces cerevisiae: purification, kinetics and substrate analyses. Yeast, 2003, 20, 1145-1150.	0.8	11
61	Molecular and functional analysis of aMIG1homologue from the yeastSchwanniomyces occidentalis. Yeast, 2002, 19, 459-465.	0.8	5
62	TheSCR1gene fromSchwanniomyces occidentalisencodes a highly hydrophobic polypeptide, which confers ribosomal resistance to cycloheximide. Yeast, 2002, 19, 735-743.	0.8	1
63	Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. FEMS Microbiology Letters, 2001, 201, 249-253.	0.7	17
64	Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion. Biochemical Journal, 1998, 329, 65-71.	1.7	46
65	The Two Nonstructural Proteins from Wheat Dwarf Virus Involved in Viral Gene Expression and Replication Are Retinoblastoma-Binding Proteins. Virology, 1996, 219, 324-329.	1.1	71
66	Molecular structure of the SWA2 gene encoding an AMY1-related ?-amylase from Schwanniomyces occidentalis. Current Genetics, 1993, 24, 75-83.	0.8	17
67	Involvement of diminution of glutathione, produced by deficiency of methionine in the diet, in the elevation of malic enzyme level in rat liver. Lipids and Lipid Metabolism, 1991, 1084, 48-52.	2.6	10
68	Isolation of a new gene (SW A2) encoding an α-amylase fromSchwanniomyces occidentalisand its expression inSaccharomyces cerevisiae. FEBS Letters, 1991, 279, 41-44.	1.3	18
69	Integration of lipid metabolism in the mammary gland and adipose tissue by prolactin during lactation. Molecular and Cellular Biochemistry, 1990, 93, 185-94.	1.4	19
70	Isolation and expression in Saccharomyces cerevisiae of a gene encoding an α-amylase from Schwanniomyces castellii. FEBS Letters, 1989, 255, 455-459.	1.3	15
71	High-level and low-level resistance to trichodermin in <i>Saccharomyces cerevisiae</i> . Biochemical Society Transactions, 1987, 15, 1041-1042.	1.6	0
72	Malic enzyme levels are increased by the activation of NADPH-consuming pathways: detoxification processes. FEBS Letters, 1986, 202, 102-106.	1.3	26

#	Article	IF	CITATIONS
73	Nutritional and hormonal regulation of malic enzyme synthesis in rat mammary gland. Biochemical Journal, 1986, 236, 441-445.	1.7	9
74	Effect of prolactin and glucocorticoids on P-enolpyruvate carboxykinase activity in liver and mammary gland from diabetic and lactating rats. Molecular and Cellular Biochemistry, 1985, 67, 19-23.	1.4	30
75	Influence of Starvation / Refeeding Transition on Lipogenesis and NADPH Producing Systems in Adipose Tissue, Mammary Gland and Liver at Mid-Lactation. Hormone and Metabolic Research, 1985, 17, 226-229.	0.7	10
76	Fatty Acyl-CoAs as feedback regulators of hexose monophosphate shunt in rat adipocytes. Molecular and Cellular Biochemistry, 1984, 63, 119-23.	1.4	7
77	Presence of Cytosolic Phosphoenolpyruvate Carboxykinase Activity in Rat Mammary Gland. Enzyme, 1983, 30, 265-268.	0.7	15
78	Coordination of Glucose Metabolism and NADPH Formation in the Adipose Tissue and Mammary Gland during the Lactation-Weaning Transition. Enzyme, 1983, 30, 38-47.	0.7	14