Maria Fernandez-Lobato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553575/publications.pdf

Version: 2024-02-01

78 papers

1,765 citations

304602 22 h-index 315616 38 g-index

80 all docs 80 docs citations

80 times ranked 1500 citing authors

#	Article	IF	CITATIONS
1	Characterization of a \hat{l}^2 -fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Journal of Biotechnology, 2007, 132, 75-81.	1.9	106
2	Production of Galacto-oligosaccharides by the Î ² -Galactosidase from Kluyveromyces lactis: Comparative Analysis of Permeabilized Cells versus Soluble Enzyme. Journal of Agricultural and Food Chemistry, 2011, 59, 10477-10484.	2.4	92
3	Molecular and Biochemical Characterization of a \hat{l}^2 -Fructofuranosidase from <i>Xanthophyllomyces dendrorhous</i> . Applied and Environmental Microbiology, 2009, 75, 1065-1073.	1.4	87
4	The Two Nonstructural Proteins from Wheat Dwarf Virus Involved in Viral Gene Expression and Replication Are Retinoblastoma-Binding Proteins. Virology, 1996, 219, 324-329.	1.1	71
5	Structural and Kinetic Analysis of Schwanniomyces occidentalis Invertase Reveals a New Oligomerization Pattern and the Role of Its Supplementary Domain in Substrate Binding. Journal of Biological Chemistry, 2010, 285, 13930-13941.	1.6	71
6	Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technology, 2012, 109, 123-130.	4.8	61
7	Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microbial Cell Factories, 2018, 17, 47.	1.9	58
8	Transformation of maltose into prebiotic isomaltooligosaccharides by a novel \hat{l} ±-glucosidase from Xantophyllomyces dendrorhous. Process Biochemistry, 2007, 42, 1530-1536.	1.8	56
9	Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatalysis and Biotransformation, 2018, 36, 57-67.	1.1	55
10	Dried alginate-entrapped enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochemistry, 2013, 48, 677-682.	1.8	53
11	Structural Analysis of \hat{l}^2 -Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. Journal of Biological Chemistry, 2016, 291, 6843-6857.	1.6	50
12	Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion. Biochemical Journal, 1998, 329, 65-71.	1.7	46
13	Structural and Kinetic Insights Reveal That the Amino Acid Pair Gln-228/Asn-254 Modulates the Transfructosylating Specificity of Schwanniomyces occidentalis \hat{I}^2 -Fructofuranosidase, an Enzyme That Produces Prebiotics. Journal of Biological Chemistry, 2012, 287, 19674-19686.	1.6	39
14	New Insights into the Fructosyltransferase Activity of <i> Schwanniomyces occidentalis < i > i^2-Fructofuranosidase, Emerging from Nonconventional Codon Usage and Directed Mutation. Applied and Environmental Microbiology, 2010, 76, 7491-7499.</i>	1.4	37
15	Biochemical characterization of a β-fructofuranosidase from <i>Rhodotorula dairenensis</i> with transfructosylating activity. FEMS Yeast Research, 2009, 9, 768-773.	1.1	36
16	Production of fructooligosaccharides by mycelium-bound transfructosylation activity present in Cladosporium cladosporioides and Penicilium sizovae. Process Biochemistry, 2014, 49, 2174-2180.	1.8	36
17	Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Applied Microbiology and Biotechnology, 2015, 99, 3459-3467.	1.7	31
18	Effect of prolactin and glucocorticoids on P-enolpyruvate carboxykinase activity in liver and mammary gland from diabetic and lactating rats. Molecular and Cellular Biochemistry, 1985, 67, 19-23.	1.4	30

#	Article	IF	CITATIONS
19	Tailored Enzymatic Synthesis of Chitooligosaccharides with Different Deacetylation Degrees and Their Anti-Inflammatory Activity. Catalysts, 2019, 9, 405.	1.6	29
20	Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. Applied Sciences (Switzerland), 2021, 11, 3212.	1.3	27
21	Malic enzyme levels are increased by the activation of NADPH-consuming pathways: detoxification processes. FEBS Letters, 1986, 202, 102-106.	1.3	26
22	Sterol Regulatory Element-Binding Protein (Sre1) Promotes the Synthesis of Carotenoids and Sterols in Xanthophyllomyces dendrorhous. Frontiers in Microbiology, 2019, 10, 586.	1.5	26
23	The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production. PLoS ONE, 2016, 11, e0162838.	1.1	24
24	Purification and biochemical characterization of an \hat{l} ±-glucosidase from Xanthophyllomyces dendrorhous. Yeast, 2006, 23, 117-125.	0.8	23
25	Efficient conversion of chitosan into chitooligosaccharides by a chitosanolytic activity from Bacillus thuringiensis. Process Biochemistry, 2018, 73, 102-108.	1.8	22
26	Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Advances, 2021, 11, 5529-5536.	1.7	21
27	Regulation of MSV and WDV virion-sense promoters by WDV nonstructural proteins: a role for their retinoblastoma protein-binding motifs. Virology, 2003, 306, 313-323.	1.1	20
28	Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous α-glucosidase with potential for prebiotics production. Applied Microbiology and Biotechnology, 2016, 100, 3125-3135.	1.7	20
29	Integration of lipid metabolism in the mammary gland and adipose tissue by prolactin during lactation. Molecular and Cellular Biochemistry, 1990, 93, 185-94.	1.4	19
30	Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase. Molecules, 2018, 23, 1271.	1.7	19
31	Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784	4 ፺ 1 14 rgBT	@ verlock
32	A Three-Step Process for the Bioconversion of Whey Permeate into a Glucose-Free D-Tagatose Syrup. Catalysts, 2020, 10, 647.	1.6	19
33	Isolation of a new gene (SW A2) encoding an α-amylase fromSchwanniomyces occidentalisand its expression inSaccharomyces cerevisiae. FEBS Letters, 1991, 279, 41-44.	1.3	18
34	Regioselective synthesis of neo-erlose by the \hat{l}^2 -fructofuranosidase from Xanthophyllomyces dendrorhous. Process Biochemistry, 2014, 49, 423-429.	1.8	18
35	Immobilization of the Î ² -fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production. Catalysts, 2018, 8, 201.	1.6	18
36	Molecular structure of the SWA2 gene encoding an AMY1-related ?-amylase from Schwanniomyces occidentalis. Current Genetics, 1993, 24, 75-83.	0.8	17

#	Article	IF	Citations
37	Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. FEMS Microbiology Letters, 2001, 201, 249-253.	0.7	17
38	Assessment of Schwanniomyces occidentalis as a host for protein production using the wide-range Xplor®2 expression platform. Applied Microbiology and Biotechnology, 2013, 97, 4443-4456.	1.7	17
39	Synthesis of 6â€Kestose using an Efficient βâ€Fructofuranosidase Engineered by Directed Evolution. Advanced Synthesis and Catalysis, 2013, 355, 1698-1702.	2.1	17
40	Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8–Tup1 involved in catabolic repression. Microbial Cell Factories, 2016, 15, 193.	1.9	17
41	Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Applied Microbiology and Biotechnology, 2019, 103, 279-289.	1.7	17
42	Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a \hat{l}^2 -fructofuranosidase showing high fructosyl-acceptor promiscuity. Applied Microbiology and Biotechnology, 2016, 100, 8769-8778.	1.7	16
43	Presence of Cytosolic Phosphoenolpyruvate Carboxykinase Activity in Rat Mammary Gland. Enzyme, 1983, 30, 265-268.	0.7	15
44	Isolation and expression in Saccharomyces cerevisiae of a gene encoding an α-amylase from Schwanniomyces castellii. FEBS Letters, 1989, 255, 455-459.	1.3	15
45	Efficient production of isomelezitose by a glucosyltransferase activity in <i>Metschnikowia reukaufii</i> cell extracts. Microbial Biotechnology, 2019, 12, 1274-1285.	2.0	15
46	Coordination of Glucose Metabolism and NADPH Formation in the Adipose Tissue and Mammary Gland during the Lactation-Weaning Transition. Enzyme, 1983, 30, 38-47.	0.7	14
47	Fructosylation of Hydroxytyrosol by the βâ€Fructofuranosidase from Xanthophyllomyces dendrorhous : Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem, 2018, 10, 4878-4887.	1.8	14
48	Aging in Male Wistar Rats Associates With Changes in Intestinal Microbiota, Gut Structure, and Cholecystokinin-Mediated Gut–Brain Axis Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1915-1921.	1.7	14
49	Screening β-Fructofuranosidases Mutant Libraries to Enhance the Transglycosylation Rates of β-(2→6) Fructooligosaccharides. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 730-738.	0.6	13
50	Expression in Escherichia coliof a recombinant adenosine kinase from Saccharomyces cerevisiae: purification, kinetics and substrate analyses. Yeast, 2003, 20, 1145-1150.	0.8	11
51	Molecular characterization and heterologous expression of two \hat{i} ±-glucosidases from Metschnikowia spp, both producers of honey sugars. Microbial Cell Factories, 2020, 19, 140.	1.9	11
52	Influence of Starvation / Refeeding Transition on Lipogenesis and NADPH Producing Systems in Adipose Tissue, Mammary Gland and Liver at Mid-Lactation. Hormone and Metabolic Research, 1985, 17, 226-229.	0.7	10
53	Involvement of diminution of glutathione, produced by deficiency of methionine in the diet, in the elevation of malic enzyme level in rat liver. Lipids and Lipid Metabolism, 1991, 1084, 48-52.	2.6	10
54	Characterization of the biosynthetic gene cluster (ata) for the A201A aminonucleoside antibiotic from Saccharothrix mutabilis subsp. capreolus. Journal of Antibiotics, 2017, 70, 404-413.	1.0	10

#	Article	IF	CITATIONS
55	Nutritional and hormonal regulation of malic enzyme synthesis in rat mammary gland. Biochemical Journal, 1986, 236, 441-445.	1.7	9
56	Thepur6gene of the puromycin biosynthetic gene cluster from Streptomyces albonigerencodes a tyrosinyl-aminonucleoside synthetase. FEBS Letters, 2004, 577, 371-375.	1.3	9
57	Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Computational and Structural Biotechnology Journal, 2021, 19, 5466-5478.	1.9	9
58	Generation of Astaxanthin Mutants in Xanthophyllomyces dendrorhous Using a Double Recombination Method Based on Hygromycin Resistance. Methods in Molecular Biology, 2012, 898, 219-234.	0.4	8
59	Fatty Acyl-CoAs as feedback regulators of hexose monophosphate shunt in rat adipocytes. Molecular and Cellular Biochemistry, 1984, 63, 119-23.	1.4	7
60	Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from <i>Schwanniomyces occidentalis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1162-1165.	0.7	7
61	Structure–Function Insights into the Fungal Endo-Chitinase Chit33 Depict its Mechanism on Chitinous Material. International Journal of Molecular Sciences, 2022, 23, 7599.	1.8	7
62	Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from (i>Xanthophyllomyces dendrorhous (i>). Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1441-1444.	0.7	6
63	Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from <i>Geobacillus</i> sp.: Optimization and Chemical Characterization of Products. Industrial & Digineering Chemistry Research, 2021, 60, 18651-18659.	1.8	6
64	Molecular and functional analysis of aMIG1homologue from the yeastSchwanniomyces occidentalis. Yeast, 2002, 19, 459-465.	0.8	5
65	On the Enzyme Specificity for the Synthesis of Prebiotic Galactooligosaccharides. , 2013, , 23-39.		5
66	Deciphering the molecular specificity of phenolic compounds as inhibitors or glycosyl acceptors of \hat{l}^2 -fructofuranosidase from Xanthophyllomyces dendrorhous. Scientific Reports, 2019, 9, 17441.	1.6	5
67	New insights into the molecular mechanism behind mannitol and erythritol fructosylation by \hat{l}^2 -fructofuranosidase from Schwanniomyces occidentalis. Scientific Reports, 2021, 11, 7158.	1.6	5
68	Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Applied Microbiology and Biotechnology, 2022, 106, 4617-4626.	1.7	5
69	The \hat{I}^2 -Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity. Catalysts, 2021, 11, 476.	1.6	4
70	Reuse of Immobilized <i>Komagataella phaffii</i> Cells for the Elimination of <scp>d</scp> -Glucose in Syrups of Bioactive Carbohydrates. ACS Food Science & Technology, 2022, 2, 682-690.	1.3	4
71	Enzymatic synthesis of novel fructosylated compounds by Ffase from <i>Schwanniomyces occidentalis</i> in green solvents. RSC Advances, 2021, 11, 24312-24319.	1.7	3
72	Characterization of virus-like particles and identification of capsid proteins in Xanthophyllomyces dendrorhous. Virus Genes, 2015, 50, 253-259.	0.7	2

#	Article	IF	CITATIONS
73	The SCR1 gene from Schwanniomyces occidentalisen codes a highly hydrophobic polypeptide, which confers ribosomal resistance to cycloheximide. Yeast, 2002, 19, 735-743.	0.8	1
74	Thepur3gene from thepurcluster encodes a monophosphatase essential for puromycin biosynthesis inStreptomyces. FEBS Letters, 2006, 580, 1807-1811.	1.3	1
75	Isolation and Characterization of Extrachromosomal Double-Stranded RNA Elements in Xanthophyllomyces dendrorhous. Methods in Molecular Biology, 2012, 898, 195-205.	0.4	1
76	Engineering Saccharomyces cerevisiae for the one-step production of a functional sweetening mixture towards food applications. Food and Bioproducts Processing, 2022, , .	1.8	1
77	High-level and low-level resistance to trichodermin in <i>Saccharomyces cerevisiae</i> Society Transactions, 1987, 15, 1041-1042.	1.6	O
78	Isolation and Characterization of Extrachromosomal Double-Stranded RNA Elements from Carotenogenic Yeasts. Methods in Molecular Biology, 2018, 1852, 327-339.	0.4	0