
Stephane Meresse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/755326/publications.pdf Version: 2024-02-01

STEDHANE MEDESSE

#	Article	IF	CITATIONS
1	The Salmonella effector SifA initiates a kinesin-1 and kinesin-3 recruitment process mirroring that mediated by Arl8a and Arl8b. Journal of Cell Science, 2022, 135, .	1.2	6
2	Endomembrane remodeling and dynamics in Salmonella infection. Microbial Cell, 2022, 9, 24-41.	1.4	8
3	Lysosome repositioning as an autophagy escape mechanism by Mycobacterium tuberculosis Beijing strain. Scientific Reports, 2021, 11, 4342.	1.6	13
4	Production of Murine Macrophages from Hoxb8-Immortalized Myeloblasts: Utility and Use in the Context of Salmonella Infection. Methods in Molecular Biology, 2021, 2182, 117-126.	0.4	1
5	Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate. Scientific Reports, 2021, 11, 22803.	1.6	3
6	Metagenomic Analysis of Microdissected Valvular Tissue for Etiological Diagnosis of Blood Culture–Negative Endocarditis. Clinical Infectious Diseases, 2020, 70, 2405-2412.	2.9	17
7	The roles of tetraspanins in bacterial infections. Cellular Microbiology, 2020, 22, e13260.	1.1	14
8	Regulation of kinesin-1 activity by the <i>Salmonella enterica</i> effectors PipB2 and SifA. Journal of Cell Science, 2020, 133, .	1.2	12
9	Omp25â€dependent engagement of SLAMF1 by <scp><i>Brucella abortus</i></scp> in dendritic cells limits acute inflammation and favours bacterial persistence in vivo. Cellular Microbiology, 2020, 22, e13164.	1.1	14
10	Molecular Characterization of SehB, a Type II Antitoxin of Salmonella enterica Serotype Typhimurium: Amino Acid Residues Involved in DNA-Binding, Homodimerization, Toxin Interaction, and Virulence. Frontiers in Microbiology, 2020, 11, 614.	1.5	5
11	Contribution of bacterial effectors and host proteins to the composition and function of bacterial effectors and host proteins to the composition and function of Salmonella-induced tubules. Cellular Microbiology, 2018, 20, e12951.	1.1	6
12	Single-cell analysis: Understanding infected cell heterogeneity. Virulence, 2017, 8, 605-606.	1.8	2
13	The infectious intracellular lifestyle of <i>Salmonella enterica</i> relies on the adaptation to nutritional conditions within the <i>Salmonella</i> -containing vacuole. Virulence, 2017, 8, 975-992.	1.8	36
14	The iron-sulfur cluster sensor lscR is a negative regulator of Spi1 type III secretion system in <i>Salmonella enterica</i> . Cellular Microbiology, 2017, 19, e12680.	1.1	21
15	Acylation of the Type 3 Secretion System Translocon Using a Dedicated Acyl Carrier Protein. PLoS Genetics, 2017, 13, e1006556.	1.5	15
16	Effector proteins support the asymmetric apportioning of <i>Salmonella</i> during cytokinesis. Virulence, 2016, 7, 669-678.	1.8	9
17	The Salmonella effector protein SifA plays a dual role in virulence. Scientific Reports, 2015, 5, 12979.	1.6	34
18	A Method to Introduce an Internal Tag Sequence into a Salmonella Chromosomal Gene. Methods in Molecular Biology, 2015, 1225, 81-92.	0.4	4

STEPHANE MERESSE

#	Article	IF	CITATIONS
19	Salmonella T3SSs: successful mission of the secret(ion) agents. Current Opinion in Microbiology, 2013, 16, 38-44.	2.3	85
20	A Toxin-Antitoxin Module of Salmonella Promotes Virulence in Mice. PLoS Pathogens, 2013, 9, e1003827.	2.1	111
21	In Vivo Identification and Characterization of CD4+ Cytotoxic T Cells Induced by Virulent Brucella abortus Infection. PLoS ONE, 2013, 8, e82508.	1.1	16
22	A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. European Journal of Immunology, 2012, 42, 2395-2408.	1.6	54
23	Peyer's Patch Dendritic Cells Sample Antigens by Extending Dendrites Through M Cell-Specific Transcellular Pores. Gastroenterology, 2012, 142, 592-601.e3.	0.6	206
24	Salmonella-induced tubular networks. Trends in Microbiology, 2011, 19, 268-277.	3.5	73
25	Is Host Lipidation of Pathogen Effector Proteins a General Virulence Mechanism?. Frontiers in Microbiology, 2011, 2, 73.	1.5	4
26	<i>Salmonella</i> detoxifying enzymes are sufficient to cope with the host oxidative burst. Molecular Microbiology, 2011, 80, 628-640.	1.2	101
27	Kinesin regulation by Salmonella. Virulence, 2011, 2, 63-66.	1.8	22
28	Sensing and Adaptation to Low pH Mediated by Inducible Amino Acid Decarboxylases in Salmonella. PLoS ONE, 2011, 6, e22397.	1.1	55
29	SKIP, the Host Target of the Salmonella Virulence Factor SifA, Promotes Kinesin-1-Dependent Vacuolar Membrane Exchanges. Traffic, 2010, 11, 899-911.	1.3	99
30	The Virulence Protein SopD2 Regulates Membrane Dynamics of Salmonella-Containing Vacuoles. PLoS Pathogens, 2010, 6, e1001002.	2.1	67
31	Pathogenic Bacteria and Dead Cells Are Internalized by a Unique Subset of Peyer's Patch Dendritic Cells That Express Lysozyme. Gastroenterology, 2010, 138, 173-184.e3.	0.6	94
32	Interaction between the SifA Virulence Factor and Its Host Target SKIP Is Essential for Salmonella Pathogenesis. Journal of Biological Chemistry, 2009, 284, 33151-33160.	1.6	52
33	Interactions between Human NK Cells and Macrophages in Response to <i>Salmonella</i> Infection. Journal of Immunology, 2009, 182, 4339-4348.	0.4	100
34	Redundant Hydrogen Peroxide Scavengers Contribute to <i>Salmonella</i> Virulence and Oxidative Stress Resistance. Journal of Bacteriology, 2009, 191, 4605-4614.	1.0	167
35	Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14052-14057.	3.3	71
36	Analysis of Kinesin Accumulation on Salmonella-Containing Vacuoles. Methods in Molecular Biology, 2007, 394, 275-287.	0.4	6

STEPHANE MERESSE

#	Article	IF	CITATIONS
37	The Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cellular Microbiology, 2006, 8, 471-484.	1.1	136
38	Molecular motors hijacking by intracellular pathogens. Cellular Microbiology, 2006, 8, 23-32.	1.1	62
39	The Salmonella effector protein PipB2 is a linker for kinesin-1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13497-13502.	3.3	153
40	The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche. Infection and Immunity, 2006, 74, 6965-6972.	1.0	98
41	Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6629-6634.	3.3	173
42	Intracellular trafficking of Parachlamydia acanthamoebae. Cellular Microbiology, 2005, 7, 581-589.	1.1	46
43	The Intracellular Fate of Salmonella Depends on the Recruitment of Kinesin. Science, 2005, 308, 1174-1178.	6.0	214
44	Salmonella typhimurium SifA Effector Protein Requires Its Membrane-anchoring C-terminal Hexapeptide for Its Biological Function. Journal of Biological Chemistry, 2003, 278, 14196-14202.	1.6	91
45	The Cytoplasmic Tail of Invariant Chain Regulates Endosome Fusion and Morphology. Molecular Biology of the Cell, 2002, 13, 1846-1856.	0.9	41
46	17 Flow cytometric analysis of Salmonella-containing vacuoles. Methods in Microbiology, 2002, , 319-329.	0.4	0
47	The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cellular Microbiology, 2002, 4, 43-54.	1.1	195
48	Activation of Rho and Rab GTPases dissociatesBrucella abortusinternalization from intracellular trafficking. Cellular Microbiology, 2002, 4, 663-676.	1.1	55
49	Unusual intracellular trafficking ofSalmonella typhimuriumin human melanoma cells. Cellular Microbiology, 2001, 3, 407-416.	1.1	33
50	Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cellular Microbiology, 2001, 3, 567-577.	1.1	149
51	Maturation steps of the Salmonella-containing vacuole. Microbes and Infection, 2001, 3, 1299-1303.	1.0	59
52	Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO Journal, 2000, 19, 3235-3249.	3.5	542
53	Salmonellamaintains the integrity of its intracellular vacuole through the action of SifA. EMBO Journal, 2000, 19, 4191-4191.	3.5	2
54	Trafficking of Shigella Lipopolysaccharide in Polarized Intestinal Epithelial Cells. Journal of Cell Biology, 1999, 145, 689-698.	2.3	51

STEPHANE MERESSE

#	Article	IF	CITATIONS
55	Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cellular Microbiology, 1999, 1, 19-32.	1.1	154
56	Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cellular Microbiology, 1999, 1, 33-49.	1.1	306
57	Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biology, 1999, 1, E183-E188.	4.6	216
58	The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO Journal, 1999, 18, 4394-4403.	3.5	221
59	Interaction of <i>Brucella abortus</i> Lipopolysaccharide with Major Histocompatibility Complex Class II Molecules in B Lymphocytes. Infection and Immunity, 1999, 67, 4048-4054.	1.0	39
60	<i>Brucella abortus</i> Transits through the Autophagic Pathway and Replicates in the Endoplasmic Reticulum of Nonprofessional Phagocytes. Infection and Immunity, 1998, 66, 5711-5724.	1.0	379
61	Flow cytometric sorting and biochemical characterization of the late endosomal rab7-containing compartment. Electrophoresis, 1997, 18, 2682-2688.	1.3	22
62	Phosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network Journal of Cell Biology, 1993, 120, 67-75.	2.3	85
63	Bases moléculaires du transport vers les lysosomes. Medecine/Sciences, 1993, 9, 148.	0.0	2
64	In vitro reconstituted blood-brain barrier. Journal of Controlled Release, 1992, 21, 81-91.	4.8	30
65	Lipoproteins and Reconstituted Blood-Brain Barrier. , 1991, , 217-229.		3
66	An Easier, Reproducible, and Mass-Production Method to Study the Blood?Brain Barrier In Vitro. Journal of Neurochemistry, 1990, 54, 1798-1801.	2.1	503
67	Low-Density Lipoprotein Receptor on Endothelium of Brain Capillaries. Journal of Neurochemistry, 1989, 53, 340-345.	2.1	128
68	Bovine Brain Endothelial Cells Express Tight Junctions and Monoamine Oxidase Activity in Long-Term Culture. Journal of Neurochemistry, 1989, 53, 1363-1371.	2.1	208
69	Interactions of high-density lipoprotein 3 with brain capillary endothelial cells. Lipids and Lipid Metabolism, 1989, 1005, 201-208.	2.6	19