Erwan Dupont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensorimotor Perturbation Induces Late and Transient Molecular Synaptic Proteins Activation and Expression Changes. Journal of Molecular Neuroscience, 2021, 71, 2534-2545.	2.3	1
2	Optimization of 2-DE and multiplexed detection of O-GlcNAcome, phosphoproteome and whole proteome protocol of synapse-associated proteins within the rat sensorimotor cortex. Journal of Neuroscience Methods, 2020, 343, 108807.	2.5	3
3	Interplay between hypoactivity, muscle properties and motor command: How to escape the vicious deconditioning circle?. Annals of Physical and Rehabilitation Medicine, 2019, 62, 122-127.	2.3	16
4	Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/Oâ€GlcNAcylation interplay. Journal of Neurochemistry, 2018, 147, 240-255.	3.9	9
5	O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Journal of Proteomics, 2018, 186, 83-97.	2.4	27
6	Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration. Behavioural Brain Research, 2017, 317, 434-443.	2.2	7
7	O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein–protein interactions. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2017-2030.	2.4	14
8	role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction. Behavioural Brain Research, 2015, 290, 117-123.	2.2	13
9	Hypoactivity Affects ICF-1 Level and PI3K/AKT Signaling Pathway in Cerebral Structures Implied in Motor Control. PLoS ONE, 2014, 9, e107631.	2.5	20
10	O-GlcNAcylation, contractile protein modifications and calcium affinity in skeletal muscle. Frontiers in Physiology, 2014, 5, 421.	2.8	15
11	Multiplexed Detection of O-GlcNAcome, Phosphoproteome, and Whole Proteome within the Same Gel. Frontiers in Endocrinology, 2014, 5, 184.	3.5	7
12	Phospho-GlcNAc modulation of slow MLC2 during soleus atrophy through a multienzymatic and sarcomeric complex. Pflugers Archiv European Journal of Physiology, 2014, 466, 2139-2151.	2.8	14
13	Potential regulation of human muscle plasticity by MLC2 post-translational modifications during bed rest and countermeasures. Archives of Biochemistry and Biophysics, 2013, 540, 125-132.	3.0	13
14	ERK Is Involved in the Reorganization of Somatosensory Cortical Maps in Adult Rats Submitted to Hindlimb Unloading. PLoS ONE, 2011, 6, e17564.	2.5	9
15	Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 2006, 439, 79-83.	27.8	296
16	Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex. Molecular Brain Research, 2005, 133, 78-86.	2.3	26
17	Effects of hypodynamia–hypokinesia on somatosensory evoked potentials in the rat. Brain Research, 2003, 978, 162-168.	2.2	18
18	Atropine prevents the changes in the hindlimb cortical area induced by hypodynamia–hypokinesia. Brain Research, 2002, 926, 51-57.	2.2	6

#	Article	IF	CITATIONS
19	Time course of recovery of the somatosensory map following hindpaw sensory deprivation in the rat. Neuroscience Letters, 2001, 309, 121-124.	2.1	16