
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic Polymerization. Chemical Reviews, 2001, 101, 3793-3818.	23.0	880
2	Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chemical Reviews, 2016, 116, 2307-2413.	23.0	401
3	A Molecular Photodiode System That Can Switch Photocurrent Direction. Science, 2004, 304, 1944-1947.	6.0	303
4	Long-Range Electron Transfer over 4 nm Governed by an Inelastic Hopping Mechanism in Self-Assembled Monolayers of Helical Peptides. Journal of the American Chemical Society, 2003, 125, 8732-8733.	6.6	178
5	Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(l-lactic) Tj ETQq1 1 0.784314 rgBT	/ <u>Oy</u> erlock	10 Jf 50 5
6	Photocurrent Generation under a Large Dipole Moment Formed by Self-Assembled Monolayers of Helical Peptides Having anN-Ethylcarbazolyl Group. Journal of the American Chemical Society, 2000, 122, 2850-2859.	6.6	114
7	Near-Infrared Fluorescent Labeled Peptosome for Application to Cancer Imaging. Bioconjugate Chemistry, 2008, 19, 109-117.	1.8	110
8	Formation of Oriented Helical Peptide Layers on a Gold Surface Due to the Self-Assembling Properties of Peptides. Langmuir, 1998, 14, 6935-6940.	1.6	109
9	Mechanistic Findings of Green Tea as Cancer Preventive for Humans. Proceedings of the Society for Experimental Biology and Medicine, 1999, 220, 225-228.	2.0	103
10	In vitro synthesis of cellulose and related polysaccharides. Progress in Polymer Science, 2001, 26, 1525-1560.	11.8	99
11	Electron Hopping over 100â€Ã Along an αâ€Helix. Angewandte Chemie - International Edition, 2010, 49, 1800-1804.	7.2	98
12	Chain length dependent transition of 310- to ?-helix of Boc-(Ala-Aib)n-OMe. Biopolymers, 1993, 33, 1337-1345.	1.2	84
13	Effects of Monolayer Structures on Long-Range Electron Transfer in Helical Peptide Monolayer. Journal of Physical Chemistry B, 2008, 112, 12840-12850.	1.2	83
14	Formation and Structure of Artificial Cellulose Spherulites via Enzymatic Polymerization. Biomacromolecules, 2000, 1, 168-173.	2.6	80
15	pH-Controlled Switching of Photocurrent Direction by Self-Assembled Monolayer of Helical Peptides. Journal of the American Chemical Society, 2005, 127, 14564-14565.	6.6	78
16	Effects of Dipole Moment, Linkers, and Chromophores at Side Chains on Long-Range Electron Transfer through Helical Peptides. Journal of Physical Chemistry B, 2005, 109, 14416-14425.	1.2	72
17	Distance dependence of longâ€range electron transfer through helical peptides. Journal of Peptide Science, 2008, 14, 192-202.	0.8	72
18	Nanotube and Threeâ€Way Nanotube Formation with Nonionic Amphiphilic Block Peptides. Macromolecular Bioscience, 2008, 8, 1026-1033.	2.1	69

#	Article	IF	CITATIONS
19	Artificial Chitin Spherulites Composed of Single Crystalline Ribbons of α-Chitin via Enzymatic Polymerization. Macromolecules, 2000, 33, 4155-4160.	2.2	68
20	Enzymatic Polymerization to Artificial Hyaluronan:Â A Novel Method to Synthesize a Glycosaminoglycan Using a Transition State Analogue Monomer. Journal of the American Chemical Society, 2001, 123, 11825-11826.	6.6	68
21	Efficient Photocurrent Generation by Self-Assembled Monolayers Composed of 310-Helical Peptides Carrying Linearly Spaced Naphthyl Groups at the Side Chains. Journal of the American Chemical Society, 2004, 126, 12780-12781.	6.6	68
22	Molecular Rectification of a Helical Peptide with a Redox Group in the Metalâ^'Moleculeâ^'Metal Junction. Journal of Physical Chemistry B, 2005, 109, 13906-13911.	1.2	65
23	Transformation of peptide nanotubes into a vesicle via fusion driven by stereo-complex formation. Chemical Communications, 2011, 47, 3204.	2.2	65
24	Electron Transfer in Metalâ^'Moleculeâ^'Metal Junction Composed of Self-Assembled Monolayers of Helical Peptides Carrying Redox-Active Ferrocene Units. Langmuir, 2005, 21, 10624-10631.	1.6	64
25	Vesicular Self-Assembly of a Helical Peptide in Water. Langmuir, 1999, 15, 4461-4463.	1.6	63
26	Molecular dipole engineering: new aspects of molecular dipoles in molecular architecture and their functions. Organic and Biomolecular Chemistry, 2008, 6, 1143.	1.5	63
27	Negative surface potential produced by self-assembled monolayers of helix peptides oriented vertically to a surface. Chemical Physics Letters, 1999, 315, 1-6.	1.2	55
28	Preparation of Novel Polymer Assemblies, "Lactosomeâ€; Composed of Poly(<scp>l</scp> -lactic acid) and Poly(sarcosine). Chemistry Letters, 2007, 36, 1220-1221.	0.7	54
29	A Helical Molecule That Exhibits Two Lengths in Response to an Applied Potential. Angewandte Chemie - International Edition, 2005, 44, 6330-6333.	7.2	51
30	Suppressive immune response of polyâ€(sarcosine) chains in peptideâ€nanosheets in contrast to polymeric micelles. Journal of Peptide Science, 2014, 20, 570-577.	0.8	51
31	Ultra-Long-Range Electron Transfer through a Self-Assembled Monolayer on Gold Composed of 120-ÃLong α-Helicesâ€. Langmuir, 2011, 27, 1530-1535.	1.6	48
32	Morphology Control between Twisted Ribbon, Helical Ribbon, and Nanotube Self-Assemblies with His-Containing Helical Peptides in Response to pH Change. Langmuir, 2014, 30, 1022-1028.	1.6	47
33	Electron Transfer through a Self-Assembled Monolayer of a Double-Helix Peptide with Linking the Terminals by Ferrocene. Langmuir, 2009, 25, 3297-3304.	1.6	46
34	Rational design of peptide nanotubes for varying diameters and lengths. Journal of Peptide Science, 2011, 17, 94-99.	0.8	46
35	Pharmacokinetic change of nanoparticulate formulation "Lactosome―on multiple administrations. International Immunopharmacology, 2012, 14, 261-266.	1.7	45
36	Linker Effects on Monolayer Formation and Long-Range Electron Transfer in Helical Peptide Monolayers. Journal of Physical Chemistry B, 2009, 113, 6256-6266.	1.2	44

#	Article	IF	CITATIONS
37	Oriented Helical Peptide Layer on the Carboxylate-Terminated Alkanethiol Immobilized on a Gold Surface. Langmuir, 1999, 15, 1155-1160.	1.6	43
38	Parallel assembly of dipolar columns composed of a stacked cyclic tri-β-peptide. Organic and Biomolecular Chemistry, 2006, 4, 1896-1901.	1.5	43
39	Amphiphilic poly(Ala)-b-poly(Sar) microspheres loaded with hydrophobic drug. Journal of Controlled Release, 1998, 51, 241-248.	4.8	42
40	Mechanistic Findings of Green Tea as Cancer Preventive for Humans. Experimental Biology and Medicine, 1999, 220, 225-228.	1.1	42
41	Spherical Self-Assembly of a Synthetic α-Helical Peptide in Water. Langmuir, 1999, 15, 4377-4379.	1.6	40
42	Tubulation on peptide vesicles by phase-separation of a binary mixture of amphiphilic right-handed and left-handed helical peptides. Soft Matter, 2011, 7, 4143.	1.2	40
43	Control of in vivo blood clearance time of polymeric micelle by stereochemistry of amphiphilic polydepsipeptides. Journal of Controlled Release, 2012, 161, 821-825.	4.8	39
44	Radiosynthesis and initial evaluation of 18F labeled nanocarrier composed of poly(L-lactic) Tj ETQq0 0 0 rgBT /O 387-394.	verlock 10 0.3) Tf 50 467 Td 38
45	Factors Influencing <i>in Vivo</i> Disposition of Polymeric Micelles on Multiple Administrations. ACS Medicinal Chemistry Letters, 2014, 5, 873-877.	1.3	37
46	Self-Assembly of α-Helix Peptide/Crown Ether Conjugate upon Complexation with Ammonium-Terminated Alkanethiolate. Langmuir, 1998, 14, 2761-2767.	1.6	35
47	Observation of Single Helical Peptide Molecule Incorporated into Alkanethiol Self-Assembled Monolayer on Gold by Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2004, 108, 15090-15095.	1.2	35
48	Columnar Assembly of Cyclic Î ² -Amino Acid Functionalized with Pyranose Rings. Biomacromolecules, 2006, 7, 2394-2400.	2.6	34
49	Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 638-646.	1.7	34
50	Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Physical Chemistry Chemical Physics, 2013, 15, 757-760.	1.3	34
51	Columnar Assembly Formation and Metal Binding of Cyclic Tri-Î ² -peptides Having Terpyridine Ligands. Organic Letters, 2007, 9, 793-796.	2.4	29
52	Versatile peptide rafts for conjugate morphologies by self-assembling amphiphilic helical peptides. Polymer Journal, 2013, 45, 509-515.	1.3	29
53	Monolayer Properties of Hydrophobic .alphaHelical Peptides Having Various End Groups at the Air/Water Interface. Langmuir, 1994, 10, 2731-2735.	1.6	28
54	Monolayer Formation and Molecular Orientation of Various Helical Peptides at the Air/Water Interface. Langmuir, 1995, 11, 1675-1679.	1.6	28

#	Article	IF	CITATIONS
55	Nanofiber formation of amphiphilic cyclic triâ€Ĵ²â€peptide. Journal of Peptide Science, 2010, 16, 110-114.	0.8	28
56	Two-Dimensional Assembly Formation of Hydrophobic Helical Peptides at the Air/Water Interface: Fluorescence Microscopic Study. Langmuir, 1995, 11, 253-258.	1.6	26
57	Electron transport properties of helical peptide dithiol at a molecular level: Scanning tunneling microscope study. Thin Solid Films, 2006, 509, 18-26.	0.8	25
58	Size Control of Core–Shell-type Polymeric Micelle with a Nanometer Precision. Langmuir, 2014, 30, 669-674.	1.6	25
59	Controlled release from amphiphilic polymer aggregates. Polymers for Advanced Technologies, 2001, 12, 85-95.	1.6	24
60	Enzymatic Polymerization Behavior Using Cellulose-Binding Domain Deficient Endoglucanase II. Macromolecular Bioscience, 2005, 5, 623-628.	2.1	23
61	Double Assembly Composed of Lectin Association with Columnar Molecular Assembly of Cyclic Tri-β-peptide Having Sugar Units. Biomacromolecules, 2007, 8, 611-616.	2.6	23
62	Evasion from accelerated blood clearance of nanocarrier named as "Lactosome―induced by excessive administration of Lactosome. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4046-4052.	1.1	23
63	Interaction of glucagon with artificial lipid bilayer membranes. International Journal of Peptide and Protein Research, 1992, 39, 431-442.	0.1	22
64	Electric properties of self-assembled monolayers of helical peptides by scanning tunneling spectroscopy. Journal of Polymer Science Part A, 2003, 41, 3493-3500.	2.5	21
65	Molecular assembly formation of cyclic hexa-β-peptide composed of acetylated glycosamino acids. Biopolymers, 2007, 88, 150-156.	1.2	21
66	Temperature-Triggered Fusion of Vesicles Composed of Right-Handed and Left-Handed Amphiphilic Helical Peptides. Langmuir, 2011, 27, 4300-4304.	1.6	21
67	Spontaneous Vesicle Formation by Helical Glycopeptides in Water. Journal of Colloid and Interface Science, 2000, 222, 265-267.	5.0	20
68	Peptide nanotube composed of cyclic tetraâ€Î²â€peptide having polydiacetylene. Biopolymers, 2012, 98, 155-160.	1.2	20
69	Complex formation with alkali and alkaline earth metal ions of cyclic octapeptides, cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4. Biopolymers, 1983, 22, 2383-2395.	1.2	19
70	Orientation and aggregation of hydrophobic helical peptides in phospholipid bilayer membrane. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1150, 1-8.	1.4	19
71	Helix Triangle:Â Unique Peptide-Based Molecular Architecture. Journal of the American Chemical Society, 2006, 128, 8034-8041.	6.6	19
72	Synthesis and conformation of the cyclic octapeptides cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4. Biopolymers, 1983, 22, 2191-2206.	1.2	18

#	Article	IF	CITATIONS
73	Selective disruption of each part of Janus molecular assemblies by lateral diffusion of stimuli-responsive amphiphilic peptides. Chemical Communications, 2015, 51, 1601-1604.	2.2	18
74	Morphology Change from Nanotube to Vesicle and Monolayer/Bilayer Alteration by Amphiphilic Block Polypeptides Having Aromatic Groups at C Terminal. Bulletin of the Chemical Society of Japan, 2017, 90, 568-573.	2.0	18
75	Lipid-induced Secondary Structures and Orientations of [Leu5]-enkephalin: Helical and Crystallographic Double-bend Conformers Revealed by IRATR and Molecular Modelling. , 1997, 3, 65-81.		17
76	Cation recognition by self-assembled monolayers of oriented helical peptides having a crown ether unit. Biopolymers, 2000, 55, 391-398.	1.2	17
77	Molecular assembly composed of a dendrimer template and block polypeptides through stereocomplex formation. Chemical Communications, 2012, 48, 6181.	2.2	17
78	Electronic properties of tetrathiafulvaleneâ€modified cyclicâ€Î²â€peptide nanotube. Biopolymers, 2016, 106, 275-282.	1.2	17
79	Ion transport through liquid membrane by cyclic octapeptides. Biopolymers, 1984, 23, 563-573.	1.2	16
80	Enhanced Photocurrent Generation by Electron Hopping through Regularly-Arranged Chromophores in a Helical Peptide Monolayer. Polymer Journal, 2008, 40, 700-709.	1.3	16
81	Conformation and complexation with metal ions of cyclic hexapeptides: cyclo (<scp>l</scp> â€Leuâ€ <scp>l</scp> â€Pheâ€ <scp>l</scp> â€Pro) ₂ and cyclo		

#	Article	IF	CITATIONS
91	In Situ Fluorescence Spectroscopic Studies of Energy Migration and Energy Transfer in the Monolayer of N-Ethylcarbazole-Containing Amphiphile. Langmuir, 1998, 14, 171-175.	1.6	13
92	Enzymatic activities of novel mutant endoglucanases carrying sequential active sites. International Journal of Biological Macromolecules, 2008, 43, 226-231.	3.6	13
93	Immobilization of Hisâ€Tagged Endoglucanase on Gold via Various Niâ€NTA Selfâ€Assembled Monolayers and Its Hydrolytic Activity. Macromolecular Bioscience, 2010, 10, 1265-1272.	2.1	13
94	Electric Field Effect of Helical Peptide Dipole in Self-Assembled Monolayers on Electronic Structure of Oligo(Phenyleneethynylene). Journal of Physical Chemistry C, 2010, 114, 4669-4674.	1.5	13
95	Supramolecular systems composed of α-helical peptides. Supramolecular Science, 1996, 3, 13-18.	0.7	12
96	Multilayer formation of oriented helical peptides glued by hydrogen bonding. Thin Solid Films, 2001, 393, 59-65.	0.8	12
97	Fourâ€peptideâ€nanotube bundle formation by selfâ€assembling of cyclic tetraâ€Î²â€peptide using gâ€quartet r Biopolymers, 2013, 100, 141-147.	notif. 1.2	12
98	Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptoid with Poly(<i>N</i> -ethyl glycine) in Water by a Hydrophilic-Region-Driven-Type Mechanism. Journal of Physical Chemistry B, 2018, 122, 7178-7184.	1.2	12
99	Phase-Separated Molecular Assembly of a Nanotube Composed of Amphiphilic Polypeptides Having a Helical Hydrophobic Block. ACS Omega, 2018, 3, 7158-7164.	1.6	12
100	Piezoelectric property of bundled peptide nanotubes stapled by bisâ€cyclicâ€Î²â€peptide. Journal of Peptide Science, 2019, 25, e3134.	0.8	12
101	Photocurrent Generation by the Self-Assembled Monolayers Integrating a Photoenergy-Harvesting System and an Electron-Transport System of Helical Peptide. Chemistry Letters, 2000, 29, 676-677.	0.7	11
102	Unique Helical Triangle Molecular Geometry Induced by Dipole–Dipole Interactions. Bulletin of the Chemical Society of Japan, 2007, 80, 1483-1491.	2.0	11
103	A novel polypseudorotaxane composed of cyclic β-peptide as bead component. Chemical Communications, 2007, , 1023-1025.	2.2	11
104	Synthesis and interaction with metal ions of cyclic oligopeptides bearing carboxyl groups. International Journal of Peptide and Protein Research, 1989, 34, 104-110.	0.1	11
105	Chirally Twisted Oligo(phenyleneethynylene) by Cyclization with α-Helical Peptide. Journal of Organic Chemistry, 2009, 74, 3462-3468.	1.7	11
106	Enzymatic Polymerization Catalyzed by Immobilized Endoglucanase on Gold. Biomacromolecules, 2011, 12, 785-790.	2.6	11
107	Two one-dimensional arrays of naphthyl and anthryl groups along peptide nanotubes prepared from cyclic peptides comprising \hat{I}_{\pm} - and \hat{I}^2 -amino acids. Soft Matter, 2018, 14, 7597-7604.	1.2	11
108	Inflammation-induced synergetic enhancement of nanoparticle treatments with DOXIL® and 90Y-Lactosome for orthotopic mammary tumor. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	10

#	Article	IF	CITATIONS
109	Construction and Piezoelectric Properties of a Single-Peptide Nanotube Composed of Cyclic β-peptides with Helical Peptides on the Side Chains. Biomacromolecules, 2021, 22, 2815-2821.	2.6	10
110	Ca2+ binding cyclic octapeptides having an alternating sar and a hydrophobic amino acid in the sequence. Biopolymers, 1989, 28, 1235-1246.	1.2	9
111	Receptor selectivity of enkephalin analogs carrying artificial address peptides. International Journal of Peptide and Protein Research, 1990, 35, 550-556.	0.1	9
112	Binding of enkephalin/dextran conjugates to opioid receptors. International Journal of Peptide and Protein Research, 1994, 43, 219-224.	0.1	9
113	Modulation of Band Bending of Gallium Arsenide with Oriented Helical Peptide Monolayers. Journal of Physical Chemistry C, 2010, 114, 22677-22683.	1.5	9
114	Anodic Photocurrent Generation by Porphyrin-Terminated Helical Peptide Monolayers on Gold. Journal of Physical Chemistry C, 2015, 119, 8054-8061.	1.5	9
115	Synthesis of type 2 Lewis antigens via novel regioselective glycosylation of an orthogonally protected lactosamine diol derivative. Carbohydrate Research, 2016, 422, 34-44.	1.1	9
116	Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	9
117	Flexible Modulation of Electronic Band Structures of Wide Band Gap GaN Semiconductors Using Bioinspired, Nonbiological Helical Peptides. Advanced Functional Materials, 2018, 28, 1704034.	7.8	9
118	Surface potential generation by helical peptide monolayers and multilayers on gold surface. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1999, 75, 287-290.	1.6	8
119	Formation and electronic properties of two-dimensional PbS nanostructure composed of an α-helical peptide/crown ether conjugate. Thin Solid Films, 2005, 479, 261-268.	0.8	8
120	Cyclic hexapeptides bearing carboxyl groups. International Journal of Peptide and Protein Research, 2009, 34, 97-103.	0.1	8
121	Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	8
122	Peptide nanotube aligning side chains onto one side. Journal of Peptide Science, 2016, 22, 391-396.	0.8	8
123	Peptide Self-Assembly in Phospholipid Bilayer Membrane Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1992, 68, 121-126.	1.6	7
124	Synthesis of glycosaminoglycans via enzymatic polymerization. Journal of Polymer Science Part A, 2003, 41, 3541-3548.	2.5	7
125	Photoresponsive Change of the Surface Potential Generated by Helical Peptide Self-Assembled Monolayers. Polymer Journal, 2005, 37, 599-607.	1.3	7
126	Fully Hydrophobic Artificial Protein but Water Dispersible due to Large Dipole. Polymer Journal, 2006, 38, 381-386.	1.3	7

#	Article	IF	CITATIONS
127	Foldamer for novel peptide derivatives with pyrene units incorporated into the main chain. Science and Technology of Advanced Materials, 2006, 7, 544-551.	2.8	7
128	Dipole effects on molecular and electronic structures in a novel conjugate of oligo(phenyleneethynylene) and helical peptide. Physical Chemistry Chemical Physics, 2009, 11, 3967.	1.3	7
129	Preparation of fibrous cellulose by enzymatic polymerization using cross-linked mutant endoglucanase II. Chemical Communications, 2011, 47, 10127.	2.2	7
130	Reaction specificity of keratanase II in the transglycosylation using the sugar oxazolines having keratan sulfate repeating units. Carbohydrate Research, 2018, 456, 61-68.	1.1	7
131	The effect of macrodipole orientation on the piezoelectric response of cyclic β-peptide nanotube bundles on gold substrates. Polymer Journal, 2019, 51, 601-609.	1.3	7
132	Chiral and random arrangements of flavin chromophores along cyclic peptide nanotubes on gold influencing differently on surface potential and piezoelectricity. RSC Advances, 2019, 9, 3618-3624.	1.7	7
133	Ca2+ transport through lipid membrane by diastereomer cyclic octapeptides. Biopolymers, 1989, 28, 1247-1257.	1.2	6
134	Incorporation of hydrophobic helix-bundle peptides into lipid bilayer membranes facilitated by a peptide-umbrella structure. Chemical Communications, 1998, , 363-364.	2.2	6
135	Preparation and functions of self-assembled monolayers of helix peptides. Journal of Polymer Science Part A, 2000, 38, 4826-4831.	2.5	6
136	Opioid receptor affinity of multivalent ligand system consisting of polymerized liposome. International Journal of Peptide and Protein Research, 1996, 48, 95-101.	0.1	6
137	Vertical orientation with a narrow distribution of helical peptides immobilized on a quartz substrate by stereocomplex formation. Soft Matter, 2012, 8, 3387.	1.2	6
138	Nickel coating on peptide nanotubes by electroless plating. Thin Solid Films, 2012, 520, 1837-1841.	0.8	6
139	Precise control of nanoparticle surface by host–guest chemistry for delivery to tumor. RSC Advances, 2015, 5, 35346-35351.	1.7	6
140	A Novel Chemoenzymatic Synthesis of Sulfated Typeâ€2 Tumorâ€Associated Carbohydrate Antigens by Transglycosylation of Sulfated Lewis X Oxazoline Catalyzed by Keratanaseâ€II. ChemBioChem, 2016, 17, 1879-1886.	1.3	6
141	O ₂ -Triggered Directional Switching of Photocurrent in Self-Assembled Monolayer Composed of Porphyrin- and Fullerene-Terminated Helical Peptides on Gold. Journal of Physical Chemistry C, 2016, 120, 3684-3689.	1.5	6
142	Immune activation with peptide assemblies carrying Lewis y tumorâ€associated carbohydrate antigen. Journal of Peptide Science, 2017, 23, 189-197.	0.8	6
143	Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides. Langmuir, 2017, 33, 5423-5429.	1.6	6
144	Osmotic-shock-resistant Vesicle Comprising Interdigitated Monolayer of Block Polypeptides. Chemistry Letters, 2018, 47, 726-728.	0.7	6

#	Article	IF	CITATIONS
145	Cell interactions of enkephalin/polypeptide conjugates. Journal of Molecular Recognition, 1991, 4, 35-41.	1.1	5
146	Photoenergy Migration and Hole Transfer in a Bilayer Membrane Composed of Amphiphilic Compounds Carrying anN-Ethylcarbazolyl Group. Journal of Physical Chemistry B, 1997, 101, 4536-4538.	1.2	5
147	Modulation of immunogenicity of poly(sarcosine) displayed on various nanoparticle surfaces due to different physical properties. Journal of Peptide Science, 2017, 23, 889-898.	0.8	5
148	Polymeric Micelle of A3B-Type Lactosome as a Vehicle for Targeting Meningeal Dissemination. Nanomaterials, 2018, 8, 79.	1.9	5
149	Electronic Properties of Cyclic β-Peptide Nanotube Bundles Reflecting Structural Arrangement. Chemistry Letters, 2019, 48, 322-324.	0.7	5
150	A Novel Surface Modification and Immobilization Method of Anti-CD25 Antibody on Nonwoven Fabric Filter Removing Regulatory T Cells Selectively. ACS Omega, 2020, 5, 772-780.	1.6	5
151	Multivalent Ligand System Carrying Enkephalin and Neurotensin Coimmobilized on Liposomes. Journal of Peptide Science, 1996, 2, 245-251.	0.8	4
152	Influence of subphase on the orientation of helical peptides at interface. Polymer, 2002, 43, 3533-3540.	1.8	4
153	Oligo(phenyleneethynylene) as a molecular lead for STM measurement of single molecule conductance of a helical peptide. Chemical Physics Letters, 2011, 508, 281-284.	1.2	4
154	Unsymmetric vesicles with a different design on each side for near-infrared fluorescence imaging of tumor tissues. RSC Advances, 2015, 5, 14697-14703.	1.7	4
155	Fusion and fission of molecular assemblies of amphiphilic polypeptides generating small vesicles from nanotubes. Biopolymers, 2017, 108, e22903.	1.2	4
156	Compartmentalized host spaces accommodating guest aromatic molecules in a chiral way in a helix-peptide-aromatic framework. Chemical Communications, 2018, 54, 12483-12486.	2.2	4
157	Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer. Physical Chemistry Chemical Physics, 2018, 20, 15216-15222.	1.3	4
158	Engineering pH-responsive switching of donor–π–acceptor chromophore alignments along a peptide nanotube scaffold. RSC Advances, 2020, 10, 3588-3592.	1.7	4
159	Piezoelectric properties reflecting nanostructures of tetrathiafulvalene and chloranil complexes using cyclic peptide nanotube scaffolds. Peptide Science, 2021, 113, e24192.	1.0	4
160	Spontaneous Assembly Formation of Cyclic Dimer of β-Amino Acid in Water. Chemistry Letters, 2004, 33, 810-811.	0.7	3
161	Photocurrent Generation by Self-assembled Monolayers of Helical Peptides Carrying Naphthyl Groups and Ferrocene Unit as Hopping Sites. Chemistry Letters, 2009, 38, 126-127.	0.7	3
162	Enzymatic Polymerization to Cellulose by Crosslinked Enzyme Immobilized on Gold Solid Surface. Chemistry Letters, 2012, 41, 37-38.	0.7	3

#	Article	IF	CITATIONS
163	Photocurrent generation by helical peptide monolayers integrating light harvesting and chargeâ€transport functions. Biopolymers, 2013, 100, 1-13.	1.2	3
164	Prevailing Photocurrent Generation of Dâ^ï€â€"A Type Oligo(phenyleneethynylene) in Contact with Gold over Dexter-Type Energy-Transfer Quenching. Journal of Physical Chemistry A, 2016, 120, 1190-1196.	1.1	3
165	Sterical Recognition at Helix–Helix Interface of Leu-Aib-Based Polypeptides with and without a GxxxG-Motif. Langmuir, 2019, 35, 7249-7254.	1.6	3
166	Downsizing to 25-nm Reverse Polymeric Micelle Composed of AB3-type Polydepsipeptide with Comprising siRNA. Chemistry Letters, 2022, 51, 235-238.	0.7	3
167	Architecture of Peptide Assembly in Liposome. Journal of Liposome Research, 1993, 3, 805-816.	1.5	2
168	Azobenzene–Helical Peptide Conjugate: Electronic Structure and Photoisomerization in Solution and on Surface. Chemistry Letters, 2008, 37, 702-703.	0.7	2
169	Synthesis of a Heparan Sulfate Disaccharide Fluoride for Detection of Heparanase Activity. Chemistry Letters, 2013, 42, 1168-1169.	0.7	2
170	Immune responses against Lewis Y tumor-associated carbohydrate antigen displayed densely on self-assembling nanocarriers. Organic and Biomolecular Chemistry, 2018, 16, 8095-8105.	1.5	2
171	Joining Nanotubes Comprising Nucleobase-carrying Amphiphilic Polypeptides. Chimia, 2018, 72, 842.	0.3	2
172	Selective Cell Capture and Release Using Antibody-Immobilized Polymer-Grafted Surface. Kobunshi Ronbunshu, 2018, 75, 155-163.	0.2	2
173	Primary to quaternary structures of molecular assemblies. Polymer Journal, 2019, 51, 739-751.	1.3	2
174	Synthesis of Polysaccharides I: Hydrolase as Catalyst. Green Chemistry and Sustainable Technology, 2019, , 15-46.	0.4	2
175	Synthesis and Cell Adhesion of Poly(Arg-Gly-Asp-Ser-Pro) Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1995, 71, 299-303.	1.6	1
176	Functionality of Polypeptide by Induction of Specific Tertiary Structure. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 2073-2084.	1.2	1
177	Long-Range Electron Transfer through Self-Assembled Monolayers Composed of Helical Peptides Carrying a Ferrocene Unit at the Terminal. Kobunshi Ronbunshu, 2009, 66, 406-418.	0.2	1
178	Development of Novel Inhibitors Specific for Human Heparanase-1. Chemistry Letters, 2013, 42, 797-798.	0.7	1
179	Accordion-like Oscillation Mode of Helical Peptides Analyzed by Terahertz Time-domain Spectroscopy. Chemistry Letters, 2017, 46, 1576-1579.	0.7	1
180	PET Imaging Utilizing ⁸⁹ Zr-labeled Human Antibody Variant and Theranostic Technologies Provided by a Novel DDS Carrier. Drug Delivery System, 2018, 33, 214-222.	0.0	1

#	Article	IF	CITATIONS
181	Conformational properties and metal ion transport by synthetic cyclic octapeptide cyclo(D-Leu-L-Pro)4. International Journal of Peptide and Protein Research, 2009, 34, 14-20.	0.1	0
182	Preface to the special issue. Polymer Journal, 2012, 44, 2-4.	1.3	0
183	Ceneration of a strong dipole layer and its function by using helical peptide molecular assemblies. , 2003, , 253-267.		0
184	Peptide Membrane Displaying Membrane Fusion and Fission with Lipid–Raft–Like Organization. Membrane, 2017, 42, 84-89.	0.0	0