
Natalia Dudareva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7553103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The function of terpene natural products in the natural world. Nature Chemical Biology, 2007, 3, 408-414.	3.9	1,564
2	Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 2013, 198, 16-32.	3.5	1,109
3	The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annual Review of Plant Biology, 2012, 63, 73-105.	8.6	1,025
4	Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences, 2006, 25, 417-440.	2.7	1,008
5	Biochemistry of Plant Volatiles: Figure 1 Plant Physiology, 2004, 135, 1893-1902.	2.3	873
6	Biosynthesis of Plant Volatiles: Nature's Diversity and Ingenuity. Science, 2006, 311, 808-811.	6.0	766
7	From The Cover: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 933-938.	3.3	447
8	An Investigation of the Storage and Biosynthesis of Phenylpropenes in Sweet Basil. Plant Physiology, 2001, 125, 539-555.	2.3	432
9	Biochemical and Molecular Genetic Aspects of Floral Scents. Plant Physiology, 2000, 122, 627-634.	2.3	409
10	(E)-β-Ocimene and Myrcene Synthase Genes of Floral Scent Biosynthesis in Snapdragon: Function and Expression of Three Terpene Synthase Genes of a New Terpene Synthase Subfamily. Plant Cell, 2003, 15, 1227-1241.	3.1	397
11	Understanding in Vivo Benzenoid Metabolism in Petunia Petal Tissue. Plant Physiology, 2004, 135, 1993-2011.	2.3	384
12	Floral volatiles: from biosynthesis to function. Plant, Cell and Environment, 2014, 37, 1936-1949.	2.8	354
13	Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower Plant Cell, 1996, 8, 1137-1148.	3.1	335
14	Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10128-10133.	3.3	323
15	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	4.7	311
16	A Familiar Ring to It: Biosynthesis of Plant Benzoic Acids. Molecular Plant, 2015, 8, 83-97.	3.9	298
17	Developmental Regulation of Methyl Benzoate Biosynthesis and Emission in Snapdragon Flowers. Plant Cell, 2000, 12, 949-961.	3.1	279
18	Plant Phenylacetaldehyde Synthase Is a Bifunctional Homotetrameric Enzyme That Catalyzes Phenylalanine Decarboxylation and Oxidation*. Journal of Biological Chemistry, 2006, 281, 23357-23366.	1.6	257

#	Article	IF	CITATIONS
19	Regulation of Circadian Methyl Benzoate Emission in Diurnally and Nocturnally Emitting Plants. Plant Cell, 2001, 13, 2333-2347.	3.1	215
20	Metabolic engineering of plant volatiles. Current Opinion in Biotechnology, 2008, 19, 181-189.	3.3	214
21	Regulation of Methylbenzoate Emission after Pollination in Snapdragon and Petunia Flowers. Plant Cell, 2003, 15, 2992-3006.	3.1	211
22	Acetyl oA:benzylalcohol acetyltransferase – an enzyme involved in floral scent production inClarkia breweri. Plant Journal, 1998, 14, 297-304.	2.8	204
23	Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science, 2017, 356, 1386-1388.	6.0	202
24	Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant Journal, 2008, 55, 224-239.	2.8	194
25	An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nature Communications, 2013, 4, 2833.	5.8	184
26	Formation of Monoterpenes in Antirrhinum majus and Clarkia breweri Flowers Involves Heterodimeric Geranyl Diphosphate Synthases. Plant Cell, 2004, 16, 977-992.	3.1	162
27	Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16383-16388.	3.3	154
28	Rethinking how volatiles are released from plant cells. Trends in Plant Science, 2015, 20, 545-550.	4.3	153
29	Reduction of Benzenoid Synthesis in Petunia Flowers Reveals Multiple Pathways to Benzoic Acid and Enhancement in Auxin Transport. Plant Cell, 2007, 18, 3458-3475.	3.1	151
30	RNAi Suppression of <i>Arogenate Dehydratase1</i> Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals Â. Plant Cell, 2010, 22, 832-849.	3.1	146
31	Floral Scent Production in Clarkia breweri (Onagraceae) (II. Localization and Developmental) Tj ETQq1 1 0.78431	.4 rgBT /O 2.3	verlock 10 Tf 140
32	Cellular and Subcellular Localization ofS-Adenosyl-l-Methionine:Benzoic Acid Carboxyl Methyltransferase, the Enzyme Responsible for Biosynthesis of the Volatile Ester Methylbenzoate in Snapdragon Flowers. Plant Physiology, 2001, 126, 956-964.	2.3	138
33	Regulation of Circadian Methyl Benzoate Emission in Diurnally and Nocturnally Emitting Plants. Plant Cell, 2001, 13, 2333-2347.	3.1	138
34	Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). Journal of Experimental Botany, 2009, 60, 3203-3219.	2.4	136
35	Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nature Chemical Biology, 2011, 7, 19-21.	3.9	134
36	Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant Journal, 2007, 49, 265-275.	2.8	133

#	Article	IF	CITATIONS
37	Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers. Plant Cell, 2012, 24, 2015-2030.	3.1	127
38	Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 105-114.	0.7	122
39	Structure and Evolution of Linalool Synthase. Molecular Biology and Evolution, 1998, 15, 1491-1498.	3.5	119
40	Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function. Phytochemistry, 2005, 66, 1211-1230.	1.4	113
41	Cytosolic monoterpene biosynthesis is supported by plastidâ€generated geranyl diphosphate substrate in transgenic tomato fruits. Plant Journal, 2013, 75, 351-363.	2.8	109
42	Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae. Molecular Plant, 2018, 11, 1084-1096.	3.9	109
43	Scent engineering: toward the goal of controlling how flowers smell. Trends in Biotechnology, 2007, 25, 105-110.	4.9	107
44	Interlinking showy traits: coâ€engineering of scent and colour biosynthesis in flowers. Plant Biotechnology Journal, 2008, 6, 403-415.	4.1	103
45	Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nature Communications, 2019, 10, 15.	5.8	103
46	A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6866-6871.	3.3	101
47	Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nature Plants, 2018, 4, 721-729.	4.7	100
48	Plant Volatiles: Going â€~In' but not â€~Out' of Trichome Cavities. Trends in Plant Science, 2017, 22, 930	-9383	97
49	The challenges of cellular compartmentalization in plant metabolic engineering. Current Opinion in Biotechnology, 2013, 24, 239-246.	3.3	95
50	Floral Scent Production in Clarkia breweri1. Plant Physiology, 1998, 116, 599-604.	2.3	91
51	The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. Plant Cell, 2010, 21, 4002-4017.	3.1	91
52	Purification and Characterization of S-Adenosylmethionine:Benzoic Acid Carboxyl Methyltransferase, the Enzyme Responsible for Biosynthesis of the Volatile Ester Methyl Benzoate in Flowers of Antirrhinum majus. Archives of Biochemistry and Biophysics, 2000, 382, 145-151.	1.4	90
53	Generation of Phenylpropanoid Pathway-Derived Volatiles in Transgenic Plants: Rose Alcohol Acetyltransferase Produces Phenylethyl Acetate and Benzyl Acetate in Petunia Flowers. Plant Molecular Biology, 2006, 60, 555-563.	2.0	89
54	Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant Journal, 2009, 59, 256-265.	2.8	87

#	Article	IF	CITATIONS
55	Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis Â. Plant Cell, 2014, 26, 3709-3727.	3.1	85
56	The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 1938-1948.	3.1	80
57	Benzoylation and sinapoylation of glucosinolate Râ€groups in Arabidopsis. Plant Journal, 2012, 72, 411-422.	2.8	78
58	The multiple phenylpropene synthases in both <i>Clarkia breweri</i> and <i>Petunia hybrida</i> represent two distinct protein lineages. Plant Journal, 2008, 54, 362-374.	2.8	76
59	Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nature Communications, 2015, 6, 8142.	5.8	76
60	Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10050-10055.	3.3	74
61	Developmental Changes in the Metabolic Network of Snapdragon Flowers. PLoS ONE, 2012, 7, e40381.	1.1	72
62	Novel S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Archives of Biochemistry and Biophysics, 2002, 406, 261-270.	1.4	71
63	Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiologia Plantarum, 2003, 117, 435-443.	2.6	70
64	The evolutionary origins of the cat attractant nepetalactone in catnip. Science Advances, 2020, 6, eaba0721.	4.7	70
65	Evolution of Cinnamate/ <i>p</i> -Coumarate Carboxyl Methyltransferases and Their Role in the Biosynthesis of Methylcinnamate. Plant Cell, 2007, 19, 3212-3229.	3.1	66
66	An important role of a BAHD acyl transferaseâ€ l ike protein in plant innate immunity. Plant Journal, 2009, 57, 1040-1053.	2.8	64
67	Practical applications of research into the regulation of plant volatile emission. Current Opinion in Plant Biology, 2005, 8, 113-118.	3.5	61
68	A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of <i>Petunia hybrida</i> . Plant Journal, 2010, 62, 64-76.	2.8	59
69	Genetic manipulation of lignocellulosic biomass for bioenergy. Current Opinion in Chemical Biology, 2015, 29, 32-39.	2.8	57
70	Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. Plant Journal, 2011, 66, 591-602.	2.8	56
71	Natural fumigation as a mechanism for volatile transport between flower organs. Nature Chemical Biology, 2019, 15, 583-588.	3.9	56
72	Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nature Chemical Biology, 2021, 17, 1037-1045.	3.9	54

#	Article	IF	CITATIONS
73	Evolution of Floral Scent in Clarkia: Novel Patterns of S-Linalool Synthase Gene Expression in the C. breweri Flower. Plant Cell, 1996, 8, 1137.	3.1	52
74	A chromosomal-scale genome assembly of <i>Tectona grandis</i> reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways. GigaScience, 2019, 8, .	3.3	52
75	<i>CCoAOMT</i> Down-Regulation Activates Anthocyanin Biosynthesis in Petunia. Plant Physiology, 2016, 170, 717-731.	2.3	51
76	Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nature Chemical Biology, 2021, 17, 138-145.	3.9	50
77	<i>Petunia</i> × <i>hybrida</i> floral scent production is negatively affected by highâ€ŧemperature growth conditions. Plant, Cell and Environment, 2015, 38, 1333-1346.	2.8	49
78	Aromatic Amino Acids: A Complex Network Ripe for Future Exploration. Trends in Plant Science, 2020, 25, 670-681.	4.3	45
79	The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytologist, 2014, 204, 661-670.	3.5	44
80	The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
81	The floral volatile, methyl benzoate, from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana. Planta, 2007, 226, 1-10.	1.6	39
82	Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis. Journal of Biological Chemistry, 2013, 288, 3163-3173.	1.6	39
83	Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metabolic Engineering, 2014, 24, 107-116.	3.6	38
84	Metabolomics of Plant Volatiles. Methods in Molecular Biology, 2009, 553, 329-343.	0.4	35
85	The lack of floral synthesis and emission of isoeugenol in <i>Petunia axillaris</i> subsp. <i>parodii</i> is due to a mutation in the <i>isoeugenol synthase</i> gene. Plant Journal, 2009, 58, 961-969.	2.8	34
86	A Promiscuous CYP706A3 Reduces Terpene Volatile Emission from Arabidopsis Flowers, Affecting Florivores and the Floral Microbiome. Plant Cell, 2019, 31, 2947-2972.	3.1	33
87	Targeted Metabolomics of the Phenylpropanoid Pathway in <scp><i>Arabidopsis thaliana</i></scp> using Reversed Phase Liquid Chromatography Coupled with Tandem Mass Spectrometry. Phytochemical Analysis, 2017, 28, 267-276.	1.2	30
88	Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway. Plant Cell, 2014, 26, 3101-3114.	3.1	27
89	Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway. Nature Chemical Biology, 2020, 16, 850-856.	3.9	27
90	Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense. Journal of Chemical Ecology, 2017, 43, 573-585.	0.9	26

#	Article	IF	CITATIONS
91	Characterization of Benzylalcohol Acetyltransferases in Scented and Non-Scented Clarkia Species. Plant and Cell Physiology, 1999, 40, 916-923.	1.5	25
92	A Survey of Oxidative Paracatalytic Reactions Catalyzed by Enzymes that Generate Carbanionic Intermediates: Implications for ROS Production, Cancer Etiology, and Neurodegenerative Diseases. Advances in Enzymology and Related Areas of Molecular Biology, 2011, 77, 307-360.	1.3	25
93	A peroxisomal thioesterase plays auxiliary roles in plant βâ€oxidative benzoic acid metabolism. Plant Journal, 2018, 93, 905-916.	2.8	25
94	Floral Scents and Fruit Aromas Inspired by Nature. , 2009, , 405-431.		25
95	A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants. Nature Communications, 2022, 13, 1352.	5.8	25
96	Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. Plant Journal, 2017, 92, 939-950.	2.8	24
97	Aromatic Volatiles and Their Involvement in Plant Defense. , 2008, , 409-432.		24
98	Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. Journal of Experimental Botany, 2021, 72, 3704-3722.	2.4	23
99	Structure of the mitochondrial genome of Beta vulgaris L Theoretical and Applied Genetics, 1988, 76, 753-759.	1.8	22
100	A 13C isotope labeling method for the measurement of lignin metabolic flux in Arabidopsis stems. Plant Methods, 2018, 14, 51.	1.9	22
101	Developmental Regulation of Phenylpropanoid Biosynthesis in Leaves and Glandular Trichomes of Basil (Ocimum basilicum L.). International Journal of Plant Sciences, 2006, 167, 447-454.	0.6	21
102	Phenotypic Space and Variation of Floral Scent Profiles during Late Flower Development in Antirrhinum. Frontiers in Plant Science, 2016, 7, 1903.	1.7	21
103	Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. Journal of Chemical Ecology, 2017, 43, 143-152.	0.9	20
104	Biosynthesis of methyleugenol and methylisoeugenol in Daucus carota leaves: Characterization of eugenol/isoeugenol synthase and O-Methyltransferase. Phytochemistry, 2019, 159, 179-189.	1.4	20
105	Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA Research, 2020, 27, .	1.5	18
106	Synthesis of the food flavoring methyl benzoate by genetically engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2006, 122, 307-315.	1.9	16
107	Plant metabolic engineering: future prospects and challenges. Current Opinion in Biotechnology, 2013, 24, 226-228.	3.3	16
108	Dynamic modeling of subcellular phenylpropanoid metabolism in Arabidopsis lignifying cells. Metabolic Engineering, 2018, 49, 36-46.	3.6	16

#	Article	IF	CITATIONS
109	ODORANT1 targets multiple metabolic networks in petunia flowers. Plant Journal, 2022, 109, 1134-1151.	2.8	14
110	Nucleotide Sequence of a Pollen-Specific cDNA from Helianthus annuus L. Encoding a Highly Basic Protein. Plant Physiology, 1994, 106, 403-404.	2.3	13
111	Prenyltransferases catalyzing geranyldiphosphate formation in tomato fruit. Plant Science, 2020, 296, 110504.	1.7	13
112	Duplication and Specialization of <i>NUDX1</i> in <i>Rosaceae</i> Led to Geraniol Production in Rose Petals. Molecular Biology and Evolution, 2022, 39, .	3.5	13
113	Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. New Phytologist, 2019, 224, 1349-1360.	3.5	12
114	Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. Plant Journal, 2021, 108, 737-751.	2.8	12
115	Chapter 10 The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles. Advances in Photosynthesis and Respiration, 2010, , 139-154.	1.0	11
116	Silent constraints: the hidden challenges faced in plant metabolic engineering. Current Opinion in Biotechnology, 2021, 69, 112-117.	3.3	10
117	Diffusion of volatile organics and water in the epicuticular waxes of petunia petal epidermal cells. Plant Journal, 2022, 110, 658-672.	2.8	10
118	Profiling hydroxycinnamoyl-coenzyme A thioesters: Unlocking the back door of phenylpropanoid metabolism. Analytical Biochemistry, 2012, 420, 182-184.	1.1	9
119	Combining biotechnology and evolution for understanding the mechanisms of pollinator attraction. Current Opinion in Biotechnology, 2021, 70, 213-219.	3.3	9
120	A pollen-specific gene from sunflower encodes a member of the leucine-rich-repeat protein superfamily. Plant Science, 1995, 111, 81-93.	1.7	8
121	Tomato Fruits—A Platform for Metabolic Engineering of Terpenes. Methods in Enzymology, 2016, 576, 333-359.	0.4	8
122	Benzenoids Dominate the Fragrance of Petunia Flowers. , 2009, , 51-69.		7
123	Structural organization and transcription of plant mitochondrial and chloroplast genomes. Electron Microscopy Reviews, 1991, 4, 221-247.	1.3	6
124	Metabolie Engineering of Floral Scent of Ornamentals. Journal of Crop Improvement, 2006, 18, 325-346.	0.9	6
125	A flower-specific gene family whose expression is regulated temporally and spatially during flower development in sunflower. Plant Science, 1996, 120, 161-173.	1.7	5
126	Regulation of Circadian Methyl Benzoate Emission in Diurnally and Nocturnally Emitting Plants. Plant Cell, 2001, 13, 2333.	3.1	5

#	Article	IF	CITATIONS
127	Quantification of Plant Volatiles. Methods in Molecular Biology, 2014, 1083, 41-53.	0.4	5
128	Overcoming Bottlenecks for Metabolic Engineering of Sesquiterpene Production in Tomato Fruits. Frontiers in Plant Science, 2021, 12, 691754.	1.7	5
129	Identification of a wild carrot as carrot psylla (Bactericera trigonica) attractant and host plant chemistry. Plant Science, 2021, 311, 111011.	1.7	5
130	Floral Scent Metabolic Pathways. , 2006, , 55-78.		5
131	The chloroplast genome of Beta vulgaris L.: Structural organization and transcriptional activity. Plant Science, 1989, 62, 93-103.	1.7	4
132	Editorial. Molecular Plant, 2010, 3, 1.	3.9	4
133	Application of Dynamic Flux Analysis in Plant Metabolic Networks. , 2009, , 285-305.		4
134	Floral Scent Metabolic Pathways and Their Regulation. , 2020, , 147-164.		4
135	Floral Scent: Biosynthesis, Regulation and Genetic Modifications. , 0, , 240-257.		3
136	A Familiar Ring to It: Biosynthesis of Plant Benzoic Acids. Molecular Plant, 2014, , .	3.9	3
137	Emission and Perception of Plant Volatiles. , 2020, , 251-267.		3
138	Transcriptional up-regulation of host-specific terpene metabolism in aphid-induced galls of <i>Pistacia palaestina</i> . Journal of Experimental Botany, 2022, 73, 555-570.	2.4	2
139	Aromatic Amino Acid Network: Biosynthesis, Regulation and Transport. FASEB Journal, 2015, 29, 103.2.	0.2	2
140	Biosynthesis of Scent and Flavor Compounds. Current Plant Science and Biotechnology in Agriculture, 1999, , 601-604.	0.0	1
141	Floral Benzenoid Carboxyl Methyltransferases: From in vitro to in Planta Function. ChemInform, 2005, 36, no.	0.1	0
142	Career Profile: Biochemist and Plant Molecular Biologist. Journal of Chemical Education, 2007, 84, 1564.	1.1	0
143	Floral Scent. , 2004, , 456-459.		Ο