
## **Thomas J Simpson**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7552816/publications.pdf Version: 2024-02-01



THOMAS | SIMPSON

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fusarochromene, a novel tryptophan-derived metabolite from Fusarium sacchari. Organic and<br>Biomolecular Chemistry, 2021, 19, 182-187.                                                                                                     | 1.5  | 2         |
| 2  | Structural and synthetic studies on maleic anhydride and related diacid natural products.<br>Tetrahedron, 2020, 76, 130717.                                                                                                                 | 1.0  | 4         |
| 3  | Uncovering biosynthetic relationships between antifungal nonadrides and octadrides. Chemical Science, 2020, 11, 11570-11578.                                                                                                                | 3.7  | 13        |
| 4  | Total Synthesis of Kalimantacin A. Organic Letters, 2020, 22, 6349-6353.                                                                                                                                                                    | 2.4  | 5         |
| 5  | The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in <i>Staphylococcus<br/>aureus</i> by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie, 2020,<br>132, 10636-10643.                | 1.6  | 6         |
| 6  | Mixing and matching genes of marine and terrestrial origin in the biosynthesis of the mupirocin antibiotics. Chemical Science, 2020, 11, 5221-5226.                                                                                         | 3.7  | 14        |
| 7  | The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by<br>Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie - International<br>Edition, 2020, 59, 10549-10556. | 7.2  | 20        |
| 8  | A Priming Cassette Generates Hydroxylated Acyl Starter Units in Mupirocin and Thiomarinol<br>Biosynthesis. ACS Chemical Biology, 2020, 15, 494-503.                                                                                         | 1.6  | 9         |
| 9  | Control of βâ€Branching in Kalimantacin Biosynthesis: Application of13Câ€NMR to Polyketide Programming.<br>Angewandte Chemie, 2019, 131, 12576-12580.                                                                                       | 1.6  | 2         |
| 10 | Control of βâ€Branching in Kalimantacin Biosynthesis: Application of <sup>13</sup> Câ€NMR to Polyketide<br>Programming. Angewandte Chemie - International Edition, 2019, 58, 12446-12450.                                                   | 7.2  | 13        |
| 11 | Molecular basis of methylation and chain-length programming in a fungal iterative highly reducing polyketide synthase. Chemical Science, 2019, 10, 8478-8489.                                                                               | 3.7  | 22        |
| 12 | Structure revision of cryptosporioptides and determination of the genetic basis for dimeric xanthone biosynthesis in fungi. Chemical Science, 2019, 10, 2930-2939.                                                                          | 3.7  | 40        |
| 13 | Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chemical Science, 2019, 10, 233-238.                                                                                | 3.7  | 42        |
| 14 | Defining the genes for the final steps in biosynthesis of the complex polyketide antibiotic mupirocin by<br>Pseudomonas fluorescens NCIMB10586. Scientific Reports, 2019, 9, 1542.                                                          | 1.6  | 8         |
| 15 | The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis.<br>Chemical Science, 2018, 9, 4109-4117.                                                                                                      | 3.7  | 28        |
| 16 | Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Transâ€AT Polyketide Synthase Pathway.<br>ChemBioChem, 2018, 19, 836-841.                                                                                                | 1.3  | 3         |
| 17 | A Rieske oxygenase/epoxide hydrolase-catalysed reaction cascade creates oxygen heterocycles in mupirocin biosynthesis. Nature Catalysis, 2018, 1, 968-976.                                                                                  | 16.1 | 21        |
| 18 | Strobilurin biosynthesis in Basidiomycete fungi. Nature Communications, 2018, 9, 3940.                                                                                                                                                      | 5.8  | 71        |

THOMAS J SIMPSON

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Investigations into the biosynthesis of the antifungal strobilurins. Organic and Biomolecular Chemistry, 2018, 16, 5524-5532.                                                                                                     | 1.5 | 18        |
| 20 | Oryzines A & B, Maleidride Congeners from Aspergillus oryzae and Their Putative Biosynthesis.<br>Journal of Fungi (Basel, Switzerland), 2018, 4, 96.                                                                              | 1.5 | 10        |
| 21 | In vitro kinetic study of the squalestatin tetraketide synthase dehydratase reveals the stereochemical course of a fungal highly reducing polyketide synthase. Chemical Communications, 2017, 53, 1727-1730.                      | 2.2 | 18        |
| 22 | Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angewandte Chemie - International Edition, 2017, 56, 3930-3934.                                                     | 7.2 | 15        |
| 23 | Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angewandte Chemie, 2017, 129, 3988-3992.                                                                            | 1.6 | 3         |
| 24 | Genetic and chemical characterisation of the cornexistin pathway provides further insight into maleidride biosynthesis. Chemical Communications, 2017, 53, 7965-7968.                                                             | 2.2 | 17        |
| 25 | Elucidation of the relative and absolute stereochemistry of the kalimantacin/batumin antibiotics.<br>Chemical Science, 2017, 8, 6196-6201.                                                                                        | 3.7 | 20        |
| 26 | Rücktitelbild: Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the<br>Thiomarinol Antibiotics (Angew. Chem. 14/2017). Angewandte Chemie, 2017, 129, 4126-4126.                                   | 1.6 | 0         |
| 27 | Substrate selectivity of an isolated enoyl reductase catalytic domain from an iterative highly<br>reducing fungal polyketide synthase reveals key components of programming. Chemical Science, 2017,<br>8, 1116-1126.             | 3.7 | 24        |
| 28 | Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization Involved in their<br>Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 6784-6788.                                                  | 7.2 | 55        |
| 29 | Recognition of extended linear and cyclised polyketide mimics by a type II acyl carrier protein. Chemical Science, 2016, 7, 1779-1785.                                                                                            | 3.7 | 11        |
| 30 | Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chemical Science, 2015, 6, 4837-4845.                                                                                       | 3.7 | 69        |
| 31 | Novel nonadride, heptadride and maleic acid metabolites from the byssochlamic acid producer<br>Byssochlamys fulva IMI 40021 – an insight into the biosynthesis of maleidrides. Chemical<br>Communications, 2015, 51, 17088-17091. | 2.2 | 31        |
| 32 | The Biosynthesis and Catabolism of the Maleic Anhydride Moiety of Stipitatonic Acid. Angewandte<br>Chemie - International Edition, 2014, 53, 7519-7523.                                                                           | 7.2 | 24        |
| 33 | Biosynthesis of thiomarinol A and related metabolites of Pseudoalteromonas sp. SANK 73390. Chemical Science, 2014, 5, 397-402.                                                                                                    | 3.7 | 35        |
| 34 | Fungal polyketide biosynthesis – a personal perspective. Natural Product Reports, 2014, 31, 1247-1252.                                                                                                                            | 5.2 | 23        |
| 35 | Biosynthesis of Mupirocin by <i>Pseudomonas fluorescens</i> NCIMB 10586 Involves Parallel<br>Pathways. Journal of the American Chemical Society, 2014, 136, 5501-5507.                                                            | 6.6 | 40        |
| 36 | One pathway, many compounds: heterologous expression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity. Chemical Science, 2013, 4, 3845.                                                             | 3.7 | 89        |

THOMAS J SIMPSON

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nature Chemical<br>Biology, 2013, 9, 685-692.                                                                                  | 3.9  | 78        |
| 38 | Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7642-7647.                                    | 3.3  | 148       |
| 39 | Genetic and Biosynthetic Studies of the Fungal Prenylated Xanthone Shamixanthone and Related<br>Metabolites in <i>Aspergillus spp.</i> Revisited. ChemBioChem, 2012, 13, 1680-1688.                                   | 1.3  | 38        |
| 40 | The programming role of trans-acting enoyl reductases during the biosynthesis of highly reduced fungal polyketides. Chemical Science, 2011, 2, 972.                                                                   | 3.7  | 71        |
| 41 | Nongenetic Reprogramming of a Fungal Highly Reducing Polyketide Synthase. Journal of the American<br>Chemical Society, 2011, 133, 10990-10998.                                                                        | 6.6  | 50        |
| 42 | Rational Domain Swaps Decipher Programming in Fungal Highly Reducing Polyketide Synthases and<br>Resurrect an Extinct Metabolite. Journal of the American Chemical Society, 2011, 133, 16635-16641.                   | 6.6  | 119       |
| 43 | Mupirocin F: structure elucidation, synthesis and rearrangements. Tetrahedron, 2011, 67, 5098-5106.                                                                                                                   | 1.0  | 9         |
| 44 | Engineered Thiomarinol Antibiotics Active against MRSA Are Generated by Mutagenesis and<br>Mutasynthesis of <i>Pseudoalteromonas</i> SANK73390. Angewandte Chemie - International Edition,<br>2011, 50, 3271-3274.    | 7.2  | 37        |
| 45 | A Natural Plasmid Uniquely Encodes Two Biosynthetic Pathways Creating a Potent Anti-MRSA<br>Antibiotic. PLoS ONE, 2011, 6, e18031.                                                                                    | 1.1  | 59        |
| 46 | Recognition of Intermediate Functionality by Acyl Carrier Protein over a Complete Cycle of Fatty Acid<br>Biosynthesis. Chemistry and Biology, 2010, 17, 776-785.                                                      | 6.2  | 49        |
| 47 | Resistance to and synthesis of the antibiotic mupirocin. Nature Reviews Microbiology, 2010, 8, 281-289.                                                                                                               | 13.6 | 178       |
| 48 | Probing the Interactions of Early Polyketide Intermediates with the Actinorhodin ACP from S. coelicolor A3(2). Journal of Molecular Biology, 2009, 389, 511-528.                                                      | 2.0  | 50        |
| 49 | Meroterpenoids produced by fungi. Natural Product Reports, 2009, 26, 1063.                                                                                                                                            | 5.2  | 353       |
| 50 | Authentic Heterologous Expression of the Tenellin Iterative Polyketide Synthase Nonribosomal<br>Peptide Synthetase Requires Coexpression with an Enoyl Reductase. ChemBioChem, 2008, 9, 585-594.                      | 1.3  | 125       |
| 51 | A Mammalian Type I Fatty Acid Synthase Acyl Carrier Protein Domain Does Not Sequester Acyl Chains.<br>Journal of Biological Chemistry, 2008, 283, 518-528.                                                            | 1.6  | 69        |
| 52 | Mutational Analysis Reveals That All Tailoring Region Genes Are Required for Production of<br>Polyketide Antibiotic Mupirocin by Pseudomonas fluorescens. Journal of Biological Chemistry, 2007,<br>282, 15451-15461. | 1.6  | 36        |
| 53 | Dissecting the Component Reactions Catalyzed by the Actinorhodin Minimal Polyketide Synthase.<br>Biochemistry, 2007, 46, 14672-14681.                                                                                 | 1.2  | 31        |
| 54 | Catalytic Relationships between Type I and Type II Iterative Polyketide Synthases: The Aspergillus<br>parasiticus Norsolorinic Acid Synthase. ChemBioChem, 2006, 7, 1951-1958.                                        | 1.3  | 34        |

THOMAS J SIMPSON

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Shift to Pseudomonic Acid B Production in P. fluorescens NCIMB10586 by Mutation of Mupirocin Tailoring Genes mupO, mupU, mupV, and macpE. Chemistry and Biology, 2005, 12, 825-833.                                                           | 6.2 | 29        |
| 56 | Mupirocin W, a novel pseudomonic acid produced by targeted mutation of the mupirocin biosynthetic gene cluster. Chemical Communications, 2005, , 1179.                                                                                        | 2.2 | 33        |
| 57 | Fusarin C Biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem, 2004, 5, 1196-1203.                                                                                                                                       | 1.3 | 183       |
| 58 | Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis. Chemical Communications, 2004, , 2260.                                                                                               | 2.2 | 66        |
| 59 | Characterization of the Mupirocin Biosynthesis Gene Cluster from Pseudomonas fluorescens NCIMB 10586. Chemistry and Biology, 2003, 10, 419-430.                                                                                               | 6.2 | 251       |
| 60 | MCAT is not required for in vitro polyketide synthesis in a minimal actinorhodin polyketide synthase from Streptomyces coelicolor. Chemistry and Biology, 1998, 5, 699-711.                                                                   | 6.2 | 47        |
| 61 | Acylation ofStreptomycestype II polyketide synthase acyl carrier proteins. FEBS Letters, 1998, 433, 132-138.                                                                                                                                  | 1.3 | 29        |
| 62 | Conserved secondary structure in the actinorhodin polyketide synthase acyl carrier protein from<br>Streptomyces coelicolor A3(2) and the fatty acid synthase acyl carrier protein from Escherichia coli.<br>FEBS Letters, 1996, 391, 302-306. | 1.3 | 20        |
| 63 | Biosynthesis of norsolorinic acid and averufin: substrate specificity of norsolorinic acid synthase.<br>Chemical Communications, 1996, , 301.                                                                                                 | 2.2 | 15        |
| 64 | Bartanol and bartallol, novel macrodiolides from Cytospora sp. ATCC 20502. Journal of the Chemical<br>Society Perkin Transactions 1, 1994, , 2493.                                                                                            | 0.9 | 9         |
| 65 | The structures of some metabolites of Penicillium diversum: α-and β-diversonolic esters. Journal of the<br>Chemical Society Perkin Transactions 1, 1983, , 1365-1368.                                                                         | 0.9 | 43        |
| 66 | Biosynthesis of the fungal xanthone ravenelin. Journal of the Chemical Society Perkin Transactions 1, 1976, , 898.                                                                                                                            | 0.9 | 47        |
| 67 | The biosynthesis of fungal metabolites. Part III. Structure of shamixanthone and tajixanthone,<br>metabolites of Aspergillus variecolor. Journal of the Chemical Society Perkin Transactions 1, 1974, ,<br>1584.                              | 0.9 | 26        |