Robert G M Spencer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7552757/robert-g-m-spencer-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 149
 9,073
 47
 93

 papers
 citations
 h-index
 g-index

 159
 11,161
 7.2
 6.29

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
149	Low NO and variable CH fluxes from tropical forest soils of the Congo Basin <i>Nature Communications</i> , 2022 , 13, 330	17.4	2
148	Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland <i>PLoS ONE</i> , 2022 , 17, e0252743	3.7	0
147	Shifting stoichiometry: Long-term trends in stream-dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid deposition. <i>Global Change Biology</i> , 2022 , 28, 98-114	11.4	1
146	Dynamique du carbone fluvial dans le continuum terre-ocân des grands fleuves tropicaux : l'Amazone et le Congo. <i>Geophysical Monograph Series</i> , 2022 , 401-423	1.1	
145	Fluvial Carbon Dynamics across the Land to Ocean Continuum of Great Tropical Rivers. <i>Geophysical Monograph Series</i> , 2022 , 391-412	1.1	O
144	Multidecadal declines in particulate mercury and sediment export from Russian rivers in the pan-Arctic basin <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2119857119	11.5	
143	A new conceptual framework for the transformation of groundwater dissolved organic matter <i>Nature Communications</i> , 2022 , 13, 2153	17.4	6
142	Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2021JG006516	3.7	1
141	Degrading permafrost river catchments and their impact on Arctic Ocean nearshore processes. <i>Ambio</i> , 2021 , 51, 439	6.5	3
140	Molecular Signatures of Glacial Dissolved Organic Matter From Svalbard and Greenland. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006709	5.9	4
139	Molecular Insights into Glacial Cryoconite Dissolved Organic Matter Evolution under Dark Conditions during the Ablation Season on the Tibetan Plateau. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 870-879	3.2	1
138	Pan-Arctic Riverine Dissolved Organic Matter: Synchronous Molecular Stability, Shifting Sources and Subsidies. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006871	5.9	5
137	The Pulse of the Amazon: Fluxes of Dissolved Organic Carbon, Nutrients, and Ions From the World's Largest River. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006895	5.9	3
136	Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. <i>Nature Geoscience</i> , 2021 , 14, 496-502	18.3	6
135	Drivers of Organic Molecular Signatures in the Amazon River. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2021GB006938	5.9	2
134	Limited Presence of Permafrost Dissolved Organic Matter in the Kolyma River, Siberia Revealed by Ramped Oxidation. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG005977	3.7	3
133	Questions remain about the biolability of dissolved black carbon along the combustion continuum. <i>Nature Communications</i> , 2021 , 12, 4281	17.4	6

(2020-2021)

132	Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123998	12.8	10	
131	Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GE	i δ 0671	9 ¹⁰	
130	How humans alter dissolved organic matter composition in freshwater: relevance for the Earth biogeochemistry. <i>Biogeochemistry</i> , 2021 , 154, 323-348	3.8	16	
129	How hydrology and anthropogenic activity influence the molecular composition and export of dissolved organic matter: Observations along a large river continuum. <i>Limnology and Oceanography</i> , 2021 , 66, 1730-1742	4.8	2	
128	Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater Ecosystems. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2021GB006953	5.9	4	
127	Controls on Riverine Dissolved Organic Matter Composition Across an Arctic-Boreal Latitudinal Gradient. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG005988	3.7	3	
126	Dissolved organic matter sources in glacierized watersheds delineated through compositional and carbon isotopic modeling. <i>Limnology and Oceanography</i> , 2021 , 66, 438-451	4.8	8	
125	Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. <i>Scientific Reports</i> , 2020 , 10, 8722	4.9	15	
124	Glacier Outflow Dissolved Organic Matter as a Window Into Seasonally Changing Carbon Sources: Leverett Glacier, Greenland. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2019JG0051	<i>8</i> ₁7	15	
123	Groundwater as a major source of dissolved organic matter to Arctic coastal waters. <i>Nature Communications</i> , 2020 , 11, 1479	17.4	36	
122	Mercury Export from Arctic Great Rivers. Environmental Science & Environmental	10.3	30	
121	Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes. <i>Limnology and Oceanography</i> , 2020 , 65, 1764-1780	4.8	13	
120	Arctic River Dissolved and Biogenic Silicon Exports©urrent Conditions and Future Changes With Warming. <i>Global Biogeochemical Cycles</i> , 2020 , 34, no	5.9	5	
119	Characterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and fractured rock aquifers. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 273, 163-176	5.5	21	
118	Interlaboratory comparison of humic substances compositional space as measured by Fourier transform ion cyclotron resonance mass spectrometry (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2020 , 92, 1447-1467	2.1	6	
117	PLASMA BIOCHEMISTRY PROFILES OF JUVENILE GREEN TURTLES (CHELONIA MYDAS) FROM THE BAHAMAS WITH A POTENTIAL INFLUENCE OF DIET. <i>Journal of Wildlife Diseases</i> , 2020 , 56, 768-780	1.3	O	
116	Land-use controls on carbon biogeochemistry in lowland streams of the Congo Basin. <i>Global Change Biology</i> , 2020 , 26, 1374-1389	11.4	8	
115	Fundamental drivers of dissolved organic matter composition across an Arctic effective precipitation gradient. <i>Limnology and Oceanography</i> , 2020 , 65, 1217-1234	4.8	14	

114	Rainstorm events shift the molecular composition and export of dissolved organic matter in a large drinking water reservoir in China: High frequency buoys and field observations. <i>Water Research</i> , 2020 , 187, 116471	12.5	11
113	Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2019GB006495	5.9	12
112	Life at the Frozen Limit: Microbial Carbon Metabolism Across a Late Pleistocene Permafrost Chronosequence. <i>Frontiers in Microbiology</i> , 2020 , 11, 1753	5.7	7
111	Enhanced trace element mobilization by Earth's ice sheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31648-31659	11.5	12
110	Deciphering Dissolved Organic Matter: Ionization, Dopant, and Fragmentation Insights via Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. <i>Environmental Science & Environmental Science &</i>	10.3	5
109	Du Feu [l'Eau: Source and Flux of Dissolved Black Carbon From the Congo River. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2020GB006560	5.9	5
108	Glacier Loss Impacts Riverine Organic Carbon Transport to the Ocean. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089804	4.9	8
107	Stormflows Drive Stream Carbon Concentration, Speciation, and Dissolved Organic Matter Composition in Coastal Temperate Rainforest Watersheds. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2020JG005804	3.7	4
106	Changes in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge. <i>Water Research</i> , 2020 , 169, 115201	12.5	34
105	Convergence of Terrestrial Dissolved Organic Matter Composition and the Role of Microbial Buffering in Aquatic Ecosystems. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 3125-314	4 3 .7	9
104	Variability in Dissolved Organic Matter Composition and Biolability across Gradients of Glacial Coverage and Distance from Glacial Terminus on the Tibetan Plateau. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 12207-12217	10.3	21
103	Molecular-Level Composition and Acute Toxicity of Photosolubilized Petrogenic Carbon. <i>Environmental Science & Environmental S</i>	10.3	29
102	Mobilization of aged and biolabile soil carbon by tropical deforestation. <i>Nature Geoscience</i> , 2019 , 12, 541-546	18.3	42
101	Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 2021-2038	3.7	22
100	Identifying the Molecular Signatures of Agricultural Expansion in Amazonian Headwater Streams. Journal of Geophysical Research G: Biogeosciences, 2019 , 124, 1637-1650	3.7	25
99	Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. <i>Water Research</i> , 2019 , 160, 18-28	12.5	40
98	Negligible cycling of terrestrial carbon in many lakes of the arid circumpolar landscape. <i>Nature Geoscience</i> , 2019 , 12, 180-185	18.3	40
97	Ice sheets matter for the global carbon cycle. <i>Nature Communications</i> , 2019 , 10, 3567	17.4	48

(2018-2019)

96	The Molecular Composition of Humic Substances Isolated From Yedoma Permatrost and Alas Cores in the Eastern Siberian Arctic as Measured by Ultrahigh Resolution Mass Spectrometry. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 2432-2445	3.7	6
95	Extreme rates and diel variability of planktonic respiration in a shallow sub-arctic lake. <i>Aquatic Sciences</i> , 2019 , 81, 1	2.5	8
94	Isotopic composition of oceanic dissolved black carbon reveals non-riverine source. <i>Nature Communications</i> , 2019 , 10, 5064	17.4	35
93	Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect. <i>Frontiers in Earth Science</i> , 2019 , 7,	3.5	29
92	Constraining dissolved organic matter sources and temporal variability in a model sub-Arctic lake. Biogeochemistry, 2019 , 146, 271-292	3.8	13
91	Multidecadal climate-induced changes in Arctic tundra lake geochemistry and geomorphology. Limnology and Oceanography, 2019 , 64, S179	4.8	9
90	Glacier meltwater and monsoon precipitation drive Upper Ganges Basin dissolved organic matter composition. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 244, 216-228	5.5	14
89	Flux and Seasonality of Dissolved Organic Matter From the Northern Dvina (Severnaya Dvina) River, Russia. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1041-1056	3.7	25
88	Selective Leaching of Dissolved Organic Matter From Alpine Permafrost Soils on the Qinghai-Tibetan Plateau. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1005-1016	3.7	16
87	The Ephemeral Signature of Permafrost Carbon in an Arctic Fluvial Network. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1475-1485	3.7	35
86	Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. <i>Environmental Science & Ecosystems (Ecosystems)</i> 2018, 52, 2538-2548	10.3	105
85	High fire-derived nitrogen deposition on central African forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 549-554	11.5	35
84	Examining Natural Attenuation and Acute Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy. <i>Environmental Science & Environmental Science & Env</i>	10.3	34
83	Accumulation of Terrestrial Dissolved Organic Matter Potentially Enhances Dissolved Methane Levels in Eutrophic Lake Taihu, China. <i>Environmental Science & Environmental Scie</i>	10.3	33
82	Drivers of Dissolved Organic Matter in the Vent and Major Conduits of the World's Largest Freshwater Spring. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 2775-2790	3.7	14
81	Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 2018 , 3, 132-142	7.9	189
80	Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghaillibet Plateau: importance of source and permafrost degradation. <i>Biogeosciences</i> , 2018 , 15, 6637-6648	4.6	15
79	An Assessment of Dissolved Organic Carbon Biodegradability and Priming in Blackwater Systems. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2998-3015	3.7	21

78	Increasing Alkalinity Export from Large Russian Arctic Rivers. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 8302-8308	10.3	44
77	Estimation and Sensitivity of Carbon Storage in Permafrost of North-Eastern Yakutia. <i>Permafrost and Periglacial Processes</i> , 2017 , 28, 379-390	4.2	23
76	Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs. <i>Limnology and Oceanography</i> , 2017 , 62, 1682-1700	4.8	32
75	Low photolability of yedoma permafrost dissolved organic carbon. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 200-211	3.7	42
74	Temporal and Longitudinal Mercury Trends in Burbot (Lota lota) in the Russian Arctic. <i>Environmental Science & Environmental &</i>	10.3	8
73	Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 2634-2650	03.7	21
72	Irrigation as a fuel pump to freshwater ecosystems. <i>Biogeochemistry</i> , 2017 , 136, 71-90	3.8	3
71	Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. <i>Chemical Geology</i> , 2017 , 466, 454-465	4.2	17
70	Online quantification and compound-specific stable isotopic analysis of black carbon in environmental matrices via liquid chromatography-isotope ratio mass spectrometry. <i>Limnology and Oceanography: Methods</i> , 2017 , 15, 995-1006	2.6	17
69	The Genesis and Exodus of Vascular Plant DOM from an Oak Woodland Landscape. <i>Frontiers in Earth Science</i> , 2017 , 5,	3.5	14
68	Impact of seasonality and anthropogenic impoundments on dissolved organic matter dynamics in the Klamath River (Oregon/California, USA). <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 1946-1958	3.7	13
67	Particulate organic carbon and nitrogen export from major Arctic rivers. <i>Global Biogeochemical Cycles</i> , 2016 , 30, 629-643	5.9	102
66	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. <i>Environmental Research Letters</i> , 2016 , 11, 034014	6.2	165
65	Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 181, 72-88	5.5	22
64	Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements. <i>Frontiers in Earth Science</i> , 2016 , 4,	3.5	69
63	Molecular Signatures of Biogeochemical Transformations in Dissolved Organic Matter from Ten World Rivers. <i>Frontiers in Earth Science</i> , 2016 , 4,	3.5	63
62	A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean. <i>Global Biogeochemical Cycles</i> , 2016 , 30, 689-699	5.9	42
61	Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes. <i>Geophysical Research Letters</i> , 2016 , 43, 4391-4399	4.9	25

60	Opportunities for hydrologic research in the Congo Basin. <i>Reviews of Geophysics</i> , 2016 , 54, 378-409	23.1	106
59	Origins, seasonality, and fluxes of organic matter in the Congo River. <i>Global Biogeochemical Cycles</i> , 2016 , 30, 1105-1121	5.9	48
58	Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K. <i>Science of the Total Environment</i> , 2016 , 569-570, 1330-1340	10.2	24
57	DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 272	.7 ³ 2 ⁷ 744	, 5 ¹
56	Storage and release of organic carbon from glaciers and ice sheets. <i>Nature Geoscience</i> , 2015 , 8, 91-96	18.3	192
55	Detecting the signature of permafrost thaw in Arctic rivers. <i>Geophysical Research Letters</i> , 2015 , 42, 283	0 ₂ 2835	211
54	Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13946-51	11.5	155
53	Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. <i>Nature Communications</i> , 2015 , 6, 7856	17.4	156
52	Spatial Variation in the Origin of Dissolved Organic Carbon in Snow on the Juneau Icefield, Southeast Alaska. <i>Environmental Science & Environmental &</i>	10.3	24
51	Riverine DOM 2015 , 509-533		67
50	Riverine DOM 2015 , 509-533 Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2326-2344	3.7	67 15
	Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G:</i>	3·7 2.6	
50	Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2326-2344 A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples. <i>Limnology and</i>		15
50	Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2326-2344 A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples. <i>Limnology and Oceanography: Methods</i> , 2015 , 13, 1-8 Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers.	2.6	15
50 49 48	Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2326-2344 A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples. <i>Limnology and Oceanography: Methods</i> , 2015 , 13, 1-8 Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. <i>Frontiers in Earth Science</i> , 2015 , 3,	2.6	15 11 58
50 49 48 47	Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2326-2344 A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples. <i>Limnology and Oceanography: Methods</i> , 2015 , 13, 1-8 Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. <i>Frontiers in Earth Science</i> , 2015 , 3, Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis. <i>Biogeosciences</i> , 2015 , 12, 6915-6930	2.6 3·5 4.6	15 11 58 112
50 49 48 47 46	Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2326-2344 A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples. <i>Limnology and Oceanography: Methods</i> , 2015 , 13, 1-8 Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. <i>Frontiers in Earth Science</i> , 2015 , 3, Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis. <i>Biogeosciences</i> , 2015 , 12, 6915-6930 Coordination and Sustainability of River Observing Activities in the Arctic. <i>Arctic</i> , 2015 , 68, 59 Evidence for key enzymatic controls on metabolism of Arctic river organic matter. <i>Global Change</i>	2.6 3·5 4.6 2.1	15 11 58 112 20

42	Low and declining mercury in arctic Russian rivers. <i>Environmental Science & Environmental Science & E</i>	10.3	11
41	Watershed Glacier Coverage Influences Dissolved Organic Matter Biogeochemistry in Coastal Watersheds of Southeast Alaska. <i>Ecosystems</i> , 2014 , 17, 1014-1025	3.9	20
40	Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 525-537	5.9	58
39	Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river. <i>Geophysical Research Letters</i> , 2014 , 41, 1202-1208	4.9	28
38	Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources. <i>Environmental Research Letters</i> , 2014 , 9, 055005	6.2	34
37	Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. <i>Biogeochemistry</i> , 2014 , 117, 279-297	3.8	149
36	DOM composition in an agricultural watershed: Assessing patterns and variability in the context of spatial scales. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 121, 599-610	5.5	13
35	Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. <i>Science</i> , 2013 , 340, 345-7	33.3	310
34	High biolability of ancient permafrost carbon upon thaw. <i>Geophysical Research Letters</i> , 2013 , 40, 2689-2	26рз	197
33	Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. <i>Environmental Research Letters</i> , 2013 , 8, 035023	6.2	43
32	Inorganic carbon speciation and fluxes in the Congo River. <i>Geophysical Research Letters</i> , 2013 , 40, 511-5	5 1,6 9	60
31	Chromophoric dissolved organic matter export from U.S. rivers. <i>Geophysical Research Letters</i> , 2013 , 40, 1575-1579	4.9	68
30	Controls on dissolved organic carbon composition and export from rice-dominated systems. <i>Biogeochemistry</i> , 2012 , 108, 447-466	3.8	22
29	Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. <i>Nature Geoscience</i> , 2012 , 5, 198-201	18.3	165
28	An initial investigation into the organic matter biogeochemistry of the Congo River. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 84, 614-627	5.5	94
27	Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin. Journal of Geophysical Research, 2012 , 117,		196
26	Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		233
25	Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen. <i>Global Biogeochemical Cycles</i> , 2012 , 26, n/a-n/a	5.9	149

(2004-2012)

24	Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). <i>Biogeosciences</i> , 2012 , 9, 2045-2062	4.6	75
23	Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors. Journal of Environmental Quality, 2010 , 39, 946-54	3.4	47
22	Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. <i>Limnology and Oceanography</i> , 2010 , 55, 2452-2462	4.8	720
21	Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. <i>Journal of Geophysical Research</i> , 2010 , 115,		122
20	Comparison of XAD with other dissolved lignin isolation techniques and a compilation of analytical improvements for the analysis of lignin in aquatic settings. <i>Organic Geochemistry</i> , 2010 , 41, 445-453	3.1	54
19	Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. <i>Environmental Science & Environmental Sc</i>	10.3	418
18	Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. <i>Limnology and Oceanography</i> , 2010 , 55, 1467-1477	4.8	396
17	The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. <i>Marine Chemistry</i> , 2010 , 121, 112-122	3.7	132
16	Glaciers as a source of ancient and labile organic matter to the marine environment. <i>Nature</i> , 2009 , 462, 1044-7	50.4	360
15	Fluorescence-based proxies for lignin in freshwater dissolved organic matter. <i>Journal of Geophysical Research</i> , 2009 , 114,		102
14	Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. <i>Journal of Geophysical Research</i> , 2009 , 114,		194
13	Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	175
12	The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 5266-5277	5.5	96
11	Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. <i>Global Biogeochemical Cycles</i> , 2008 , 22, n/a-n/a	5.9	231
10	Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). <i>Hydrological Processes</i> , 2007 , 21, 3181-3189	3.3	137
9	The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (U.K.). <i>Estuarine, Coastal and Shelf Science</i> , 2007 , 74, 131-144	2.9	61
8	Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. <i>Water Research</i> , 2007 , 41, 2941-50	12.5	156
7	Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. <i>Science of the Total Environment</i> , 2004 , 333, 217-32	10.2	188

6	Fluorescence Indices and Their Interpretation303-338		31
5	Zooplankton release complex dissolved organic matter to aquatic environments. <i>Biogeochemistry</i> ,1	3.8	1
4	Anthropogenic landcover impacts fluvial dissolved organic matter composition in the Upper Mississippi River Basin. <i>Biogeochemistry</i> ,1	3.8	1
3	The evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of southeast Alaska. <i>Biogeochemistry</i> ,1	3.8	5
2	Climate Change Impacts on the Hydrology and Biogeochemistry of Arctic Rivers1-26		33
1	From canopy to consumer: what makes and modifies terrestrial DOM in a temperate forest. Biogeochemistry,1	3.8	1