## Maciej GÄbka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7552478/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF                  | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| 1  | Can Vegetation Indices Serve as Proxies for Potential Sun-Induced Fluorescence (SIF)? A Fuzzy<br>Simulation Approach on Airborne Imaging Spectroscopy Data. Remote Sensing, 2021, 13, 2545.                                           | 4.0                 | 10           |
| 2  | Water table depth, experimental warming, and reduced precipitation impact on litter decomposition in a temperate Sphagnum-peatland. Science of the Total Environment, 2021, 771, 145452.                                              | 8.0                 | 28           |
| 3  | Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Scientific Reports, 2020, 10, 8592.                                                    | 3.3                 | 22           |
| 4  | Testate amoebae taxonomy and trait diversity are coupled along an openness and wetness gradient in pine-dominated Baltic bogs. European Journal of Protistology, 2020, 73, 125674.                                                    | 1.5                 | 16           |
| 5  | In-situ behavioural response and ecological stoichiometry adjustment of macroalgae (Characeae,) Tj ETQq1 1 (                                                                                                                          | ).784314 rg<br>11.3 | BT JOverlock |
| 6  | Experimental warming and precipitation reduction affect the biomass of microbial communities in a Sphagnum peatland. Ecological Indicators, 2020, 112, 106059.                                                                        | 6.3                 | 40           |
| 7  | Hyplant-Derived Sun-Induced Fluorescence—A New Opportunity to Disentangle Complex Vegetation<br>Signals from Diverse Vegetation Types. Remote Sensing, 2019, 11, 1691.                                                                | 4.0                 | 18           |
| 8  | Effects of the environs of waterbodies on aquatic plants in oxbow lakes (habitat 3150). Ecological<br>Indicators, 2019, 98, 736-742.                                                                                                  | 6.3                 | 17           |
| 9  | The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta):<br>possibilities for the control of the green tides in freshwater ecosystems. Journal of Applied<br>Phycology, 2018, 30, 1405-1416. | 2.8                 | 22           |
| 10 | Network sizeâ€dependent impact on vegetative growth and sexual reproduction in clonal patches of white clover <i>Trifolium repens</i> . Nordic Journal of Botany, 2018, 36, e01928.                                                   | 0.5                 | 0            |
| 11 | The inhibition of growth and oospores production in Chara hispida L. as an effect of iron sulphate addition: Conclusions for the use of iron coagulants in lake restoration. Ecological Engineering, 2017, 105, 1-6.                  | 3.6                 | 12           |
| 12 | Functional structure of algal mat ( Cladophora glomerata ) in a freshwater in western Poland.<br>Ecological Indicators, 2017, 74, 1-9.                                                                                                | 6.3                 | 19           |
| 13 | Bioaccumulation and toxicity studies of macroalgae (Charophyceae) treated with aluminium:<br>Experimental studies in the context of lake restoration. Ecotoxicology and Environmental Safety,<br>2017, 145, 359-366.                  | 6.0                 | 16           |
| 14 | Effect of agricultural landscape characteristics on theÂhydrobiota structure in small water bodies.<br>Hydrobiologia, 2017, 793, 121-133.                                                                                             | 2.0                 | 28           |
| 15 | Apparent niche partitioning of two congeneric submerged macrophytes in small water bodies: The case of Ceratophyllum demersum L. and C. submersum L Aquatic Botany, 2017, 137, 1-8.                                                   | 1.6                 | 15           |
| 16 | Clonality of an annual plant in a temporary environment: The case of whorled waterwort. Flora:<br>Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 50-58.                                                           | 1.2                 | 0            |
| 17 | Significance of current velocity gradients for distribution patterns of charophytes versus mosses and vascular plant communities in a lowland stream. Oceanological and Hydrobiological Studies, 2015, 44, 139-150.                   | 0.7                 | 2            |
| 18 | Molecular, morphological, and ecological differences between the terrestrial and aquatic forms ofOxyrrhynchium speciosum(Brid.) Warnst. (Brachytheciaceae). Journal of Bryology, 2014, 36, 180-190.                                   | 1.2                 | 1            |

Масіеј GÄ…вка

| #  | Article                                                                                                                                                                                                                                      | IF           | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| 19 | <i>Ulva flexuosa</i> (Ulvaceae, Chlorophyta) inhabiting inland aquatic ecosystems: molecular,<br>morphological and ecological discrimination of subspecies. European Journal of Phycology, 2014, 49,<br>471-485.                             | 2.0          | 13          |
| 20 | Morphological forms of two macrophytes (yellow water-lily and arrowhead) along velocity<br>gradient. Biologia (Poland), 2014, 69, 840-846.                                                                                                   | 1.5          | 2           |
| 21 | Plant functional diversity drives nicheâ€sizeâ€structure of dominant microbial consumers along a poor<br>to extremely rich fen gradient. Journal of Ecology, 2014, 102, 1150-1162.                                                           | 4.0          | 46          |
| 22 | Factors Determining the Distribution of Reophil and Protected <i>Hildenbrandia<br/>rivularis</i> (Liebmann) J. Agardh 1851, the Rhodophyta Freshwater Species, in Lowland River<br>Ecosystems. Polish Journal of Ecology, 2014, 62, 679-693. | 0.2          | 5           |
| 23 | Distribution patterns and environmental correlates of water mites (Hydrachnidia, Acari) in peatland microhabitats. Experimental and Applied Acarology, 2013, 61, 147-160.                                                                    | 1.6          | 22          |
| 24 | The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular) Tj ETQq0 (                                                                                                                             | 0 0 rg BT /C | ovgrlock 10 |

| 25 | Testate Amoeba (Arcellinida, Euglyphida) Ecology along a Poorâ€Rich Gradient in Fens of Western<br>Poland. International Review of Hydrobiology, 2011, 96, 356-380.                  | 0.9 | 28 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 26 | Charophytes of the Lubelszczyzna region (Eastern Poland). Acta Societatis Botanicorum Poloniae,<br>2011, 80, 159-168.                                                                | 0.8 | 5  |
| 27 | Contrasting Species—Environment Relationships in Communities of Testate Amoebae, Bryophytes and<br>Vascular Plants Along the Fen–Bog Gradient. Microbial Ecology, 2010, 59, 499-510. | 2.8 | 65 |
| 28 | Charophytes (Characeae, Charophyta) in the Czech Republic: taxonomy, autecology and distribution<br>Fottea, 2009, 9, 1-43.                                                           | 0.9 | 45 |
| 29 | Vegetation-Environment Relationships in Peatlands Dominated by Sphagnum fallax in Western Poland.<br>Folia Geobotanica, 2008, 43, 413-429.                                           | 0.9 | 14 |
| 30 | Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands, 2008, 28, 164-175.                                                                | 1.5 | 51 |
| 31 | Habitat requirements of the Charetum intermediae phytocoenoses in lakes of western Poland.<br>Biologia (Poland), 2007, 62, 657-663.                                                  | 1.5 | 8  |