Nestor Vinicio Balcazar Arciniega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7552318/publications.pdf Version: 2024-02-01

NESTOR VINICIO BALCAZAR

#	Article	IF	CITATIONS
1	A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes. Computers and Fluids, 2016, 124, 12-29.	1.3	89
2	A finite-volume/level-set method for simulating two-phase flows on unstructured grids. International Journal of Multiphase Flow, 2014, 64, 55-72.	1.6	85
3	Level-set simulations of buoyancy-driven motion of single and multiple bubbles. International Journal of Heat and Fluid Flow, 2015, 56, 91-107.	1.1	59
4	A multiple marker level-set method for simulation of deformable fluid particles. International Journal of Multiphase Flow, 2015, 74, 125-142.	1.6	44
5	Numerical study of binary droplets collision in the main collision regimes. Chemical Engineering Journal, 2019, 370, 477-498.	6.6	32
6	A level-set model for mass transfer in bubbly flows. International Journal of Heat and Mass Transfer, 2019, 138, 335-356.	2.5	30
7	A level-set model for thermocapillary motion of deformable fluid particles. International Journal of Heat and Fluid Flow, 2016, 62, 324-343.	1.1	29
8	Numerical study of Taylor bubbles rising in a stagnant liquid using a level-set/moving-mesh method. Chemical Engineering Science, 2017, 164, 158-177.	1.9	25
9	Numerical study of droplet deformation in shear flow using a conservative level-set method. Chemical Engineering Science, 2019, 207, 153-171.	1.9	25
10	DNS of the wall effect on the motion of bubble swarms. Procedia Computer Science, 2017, 108, 2008-2017.	1.2	21
11	A numerical approach for non-Newtonian two-phase flows using a conservative level-set method. Chemical Engineering Journal, 2020, 385, 123896.	6.6	21
12	Numerical study of rising bubbles with path instability using conservative level-set and adaptive mesh refinement. Computers and Fluids, 2019, 187, 83-97.	1.3	20
13	A semi-implicit coupling technique for fluid–structure interaction problems with strong added-mass effect. Journal of Fluids and Structures, 2018, 80, 94-112.	1.5	18
14	Numerical approach to study bubbles and drops evolving through complex geometries by using a level set – Moving mesh – Immersed boundary method. Chemical Engineering Journal, 2018, 349, 662-682.	6.6	16
15	A numerical study of liquid atomization regimes by means of conservative level-set simulations. Computers and Fluids, 2019, 179, 137-149.	1.3	13
16	DNS of Mass Transfer from Bubbles Rising in a Vertical Channel. Lecture Notes in Computer Science, 2019, , 596-610.	1.0	10
17	DNS of falling droplets in a vertical channel. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 398-410.	0.1	8
18	A low-dissipation convection scheme for the stable discretization of turbulent interfacial flow. Computers and Fluids, 2017, 153, 102-117.	1.3	7

NESTOR VINICIO BALCAZAR

#	Article	IF	CITATIONS
19	A scalable framework for the partitioned solution of fluid–structure interaction problems. Computational Mechanics, 2020, 66, 471-489.	2.2	7
20	Tetrahedral adaptive mesh refinement for twoâ€phase flows using conservative levelâ€set method. International Journal for Numerical Methods in Fluids, 2021, 93, 481-503.	0.9	7
21	A level-set aided single-phase model for the numerical simulation of free-surface flow on unstructured meshes. Computers and Fluids, 2016, 140, 97-110.	1.3	6
22	A level-set method for thermal motion of bubbles and droplets. Journal of Physics: Conference Series, 2016, 745, 032113.	0.3	5
23	Numerical Simulation of High-Density Ratio Bubble Motion with interIsoFoam. Fluids, 2022, 7, 152.	0.8	4
24	On estimating the interface normal and curvature in piecewise linear interface calculation <scp>â€</scp> volume of fluid approach for <scp>threeâ€dimensional</scp> arbitrary meshes. AICHE Journal, 2022, 68, .	1.8	2
25	Conservative discretization of multiphase flow with high density ratios. , 2014, , .		1
26	A finite-volume/level-set interface capturing method for unstructured grids: simulations of bubbles rising through viscous liquids. WIT Transactions on Engineering Sciences, 2014, , .	0.0	1
27	On the solution of the full three-dimensional Taylor bubble problem by using a coupled Conservative Level Set - Moving Mesh method. Journal of Physics: Conference Series, 2016, 745, 032116.	0.3	0
28	Numerical study of an impulse wave generated by a sliding mass. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 98-109.	0.1	0
29	On the solution of the problem of a drop falling against a plane by using a level set – moving mesh – immersed boundary method. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 208-219	0.1	Ο