Olivier David

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7552224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials. Brain, 2022, 145, 1653-1667.	7.6	34
2	Brain tissue classification from stereoelectroencephalographic recordings. Journal of Neuroscience Methods, 2022, 365, 109375.	2.5	3
3	Tinnitus Perception in Light of a Parietal Operculo–Insular Involvement: A Review. Brain Sciences, 2022, 12, 334.	2.3	3
4	BIDS Manager-Pipeline: A framework for multi-subject analysis in electrophysiology. Neuroscience Informatics, 2022, , 100072.	4.5	0
5	Exploring the spatial resolution of TMS-EEG coupling on the sensorimotor region. NeuroImage, 2022, 259, 119419.	4.2	9
6	Frequency-domain identification of stereoelectroencephalographic transfer functions for brain tissue classification. IFAC-PapersOnLine, 2021, 54, 565-570.	0.9	2
7	Focal polymicrogyria in children: Contribution of invasive explorations and epileptogenicity mapping in the surgical decision. Seizure: the Journal of the British Epilepsy Association, 2021, 86, 19-28.	2.0	1
8	Single-pulse electrical stimulation methodology in freely moving rat. Journal of Neuroscience Methods, 2021, 353, 109092.	2.5	4
9	Anatomical dissociation of intracerebral signals for reward and punishment prediction errors in humans. Nature Communications, 2021, 12, 3344.	12.8	27
10	Cortical hemodynamic mechanisms of reversal learning using high-resolution functional near-infrared spectroscopy: A pilot study. Neurophysiologie Clinique, 2021, 51, 409-424.	2.2	0
11	Machine Learning and Stereoelectroencephalographic Feature Extraction for Brain Tissue Classification. IFAC-PapersOnLine, 2021, 54, 340-345.	0.9	2
12	The Insula: A Stimulating Island of the Brain. Brain Sciences, 2021, 11, 1533.	2.3	7
13	Fabrication and characterization of polyimide-based â€~smooth' titanium nitride microelectrode arrays for neural stimulation and recording. Journal of Neural Engineering, 2020, 17, 016010.	3.5	15
14	Hubs disruption in mesial temporal lobe epilepsy. A restingâ€state fMRI study on a languageâ€andâ€memory network. Human Brain Mapping, 2020, 41, 779-796.	3.6	38
15	Coherence between the hippocampus and anterior thalamic nucleus as a tool to improve the effect of neurostimulation in temporal lobe epilepsy: An experimental study. Brain Stimulation, 2020, 13, 1678-1686.	1.6	7
16	Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Human Brain Mapping, 2020, 41, 4113-4126.	3.6	21
17	Deep brain stimulation of the subthalamic nucleus in obsessive–compulsives disorders: long-term follow-up of an open, prospective, observational cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1349-1356.	1.9	26
18	Epileptogenicity Mapping. Neurosurgery Clinics of North America, 2020, 31, 449-457.	1.7	3

#	Article	IF	CITATIONS
19	Modulation of visual hallucinations originating from deafferented occipital cortex by robotized transcranial magnetic stimulation. Clinical Neurophysiology, 2020, 131, 1728-1730.	1.5	1
20	Probing regional cortical excitability via input–output properties using transcranial magnetic stimulation and electroencephalography coupling. Human Brain Mapping, 2020, 41, 2741-2761.	3.6	29
21	Mapping the Insula with Stereoâ€Electroencephalography: The Emergence of Semiology in Insula Lobe Seizures. Annals of Neurology, 2020, 88, 477-488.	5.3	20
22	A 12â€month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterology and Motility, 2020, 32, e13911.	3.0	76
23	The Impact of Repetitive Transcranial Magnetic Stimulation on Functional Connectivity in Major Depressive Disorder and Bipolar Disorder Evaluated by Directed Transfer Function and Indices Based on Graph Theory. International Journal of Neural Systems, 2020, 30, 2050015.	5.2	21
24	New modeling results for an EEG measurement system with exciting and reading electrodes. IFAC-PapersOnLine, 2020, 53, 15922-15927.	0.9	1
25	Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: MRI-Based Anatomoclinical Correlations and Optimal Target. Neurosurgery, 2019, 84, 506-518.	1.1	47
26	Spike discharge characteristic of the caudal mesencephalic reticular formation and pedunculopontine nucleus in MPTP-induced primate model of Parkinson disease. Neurobiology of Disease, 2019, 128, 40-48.	4.4	3
27	iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 2019, 6, 102.	5.3	96
28	Implication of Anterior Nucleus of the Thalamus in Mesial Temporal Lobe Seizures. Neuroscience, 2019, 418, 279-290.	2.3	20
29	Reproducibility in TMS–EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimulation, 2019, 12, 787-790.	1.6	106
30	Affective modulation of the associative-limbic subthalamic nucleus: deep brain stimulation in obsessive–compulsive disorder. Translational Psychiatry, 2019, 9, 73.	4.8	24
31	Epileptogenicity Maps of Intracerebral Fast Activities (60–100 Hz) at Seizure Onset in Epilepsy Surgery Candidates. Frontiers in Neurology, 2019, 10, 1263.	2.4	15
32	Sensory coding is impaired in rat absence epilepsy. Journal of Physiology, 2019, 597, 951-966.	2.9	25
33	Distinctive epileptogenic networks for parietal operculum seizures. Epilepsy and Behavior, 2019, 91, 59-67.	1.7	7
34	Comparison of two integration methods for dynamic causal modeling of electrophysiological data. NeuroImage, 2018, 173, 623-631.	4.2	12
35	Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clinical Neurophysiology, 2018, 129, 548-554.	1.5	31
36	Electroencephalographic correlates of low-frequency vagus nerve stimulation therapy for Crohn's disease. Clinical Neurophysiology, 2018, 129, 1041-1046.	1.5	29

#	Article	IF	CITATIONS
37	Dissociable Effects of Subthalamic Stimulation in Obsessive Compulsive Disorder on Risky Reward and Loss Prospects. Neuroscience, 2018, 382, 105-114.	2.3	10
38	An on demand macaque model of mesial temporal lobe seizures induced by unilateral intra hippocampal injection of penicillin. Epilepsy Research, 2018, 142, 20-28.	1.6	6
39	Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. ELife, 2018, 7, .	6.0	27
40	Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation. Micromachines, 2018, 9, 47.	2.9	11
41	Development of propagated discharge and behavioral arrest in hippocampal and amygdala-kindled animals. Epilepsy Research, 2018, 148, 78-89.	1.6	4
42	Different effects of levodopa and subthalamic stimulation on emotional conflict in Parkinson's disease. Human Brain Mapping, 2018, 39, 5014-5027.	3.6	13
43	Complexity Analysis of EEG Data in Persons With Depression Subjected to Transcranial Magnetic Stimulation. Frontiers in Physiology, 2018, 9, 1385.	2.8	25
44	Probabilistic functional tractography of the human cortex revisited. NeuroImage, 2018, 181, 414-429.	4.2	94
45	Electroencephalographic read-outs of the modulation of cortical network activity by deep brain stimulation. Bioelectronic Medicine, 2018, 4, 2.	2.3	9
46	IntrAnat Electrodes: A Free Database and Visualization Software for Intracranial Electroencephalographic Data Processed for Case and Group Studies. Frontiers in Neuroinformatics, 2018, 12, 40.	2.5	38
47	A high-density polysomnographic picture of disorders of arousal. Sleep, 2018, 41, .	1.1	7
48	EEG Phase Synchronization in Persons With Depression Subjected to Transcranial Magnetic Stimulation. Frontiers in Neuroscience, 2018, 12, 1037.	2.8	27
49	Direct Recordings from Human Anterior Insula Reveal its Leading Role within the Error-Monitoring Network. Cerebral Cortex, 2017, 27, bhv352.	2.9	66
50	Can Patel's Ï" accurately estimate directionality of connections in brain networks from fMRI?. Magnetic Resonance in Medicine, 2017, 78, 2003-2010.	3.0	16
51	Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity. Brain, 2017, 140, 442-456.	7.6	60
52	Organization of the Anterior Limb of the Internal Capsule in the Rat. Journal of Neuroscience, 2017, 37, 2539-2554.	3.6	34
53	48. Decisional Impulsivity and the Anterior Limbic-Associative Subthalamic Nucleus in OCD: Stimulation and Functional Connectivity. Biological Psychiatry, 2017, 81, S20-S21.	1.3	0
54	Automatized set-up procedure for transcranial magnetic stimulation protocols. NeuroImage, 2017, 153, 307-318.	4.2	17

#	Article	IF	CITATIONS
55	Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cerebral Cortex, 2017, 27, 4607-4623.	2.9	42
56	Stimulation of subgenual cingulate area decreases limbic top-down effect on ventral visual stream: A DBS-EEG pilot study. NeuroImage, 2017, 146, 544-553.	4.2	23
57	Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Progress in Neurobiology, 2017, 148, 1-20.	5.7	169
58	Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach. PLoS ONE, 2017, 12, e0171458.	2.5	6
59	Multispectral Electrical Impedance Tomography using Optimization over Manifolds. Journal of Physics: Conference Series, 2016, 756, 012005.	0.4	1
60	A Differential Evolution-Based Approach for Fitting a Nonlinear Biophysical Model to fMRI BOLD Data. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 416-427.	10.8	4
61	Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: Towards functional cytoarchitectonics. NeuroImage, 2016, 135, 115-124.	4.2	40
62	On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates. Journal of Neuroscience, 2016, 36, 4917-4929.	3.6	36
63	Response inhibition rapidly increases single-neuron responses in the subthalamic nucleus of patients with Parkinson's disease. Cortex, 2016, 84, 111-123.	2.4	28
64	Correlation of <scp>FDG</scp> â€ <scp>PET</scp> hypometabolism and <scp>SEEG</scp> epileptogenicity mapping in patients with drugâ€resistant focal epilepsy. Epilepsia, 2016, 57, 2045-2055.	5.1	40
65	Modulation of motor inhibition by subthalamic stimulation in obsessive-compulsive disorder. Translational Psychiatry, 2016, 6, e922-e922.	4.8	9
66	Functional monitoring of peripheral nerves from electrical impedance measurements. Journal of Physiology (Paris), 2016, 110, 361-371.	2.1	12
67	Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas. Scientific Reports, 2016, 6, 27250.	3.3	18
68	Endoventricular Deep Brain Stimulation of the Third Ventricle. Neurosurgery, 2016, 79, 806-815.	1.1	32
69	Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials. Journal of Neuroscience Methods, 2016, 264, 94-102.	2.5	38
70	The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. Journal of Neural Transmission, 2016, 123, 667-678.	2.8	37
71	What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease?. Translational Psychiatry, 2016, 6, e753-e753.	4.8	60
72	Dominant efficiency of nonregular patterns of subthalamic nucleus deep brain stimulation for Parkinson's disease and obsessive-compulsive disorder in a data-driven computational model. Journal of Neural Engineering, 2016, 13, 016013.	3.5	19

#	Article	IF	CITATIONS
73	The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. Journal of Neuroscience Methods, 2016, 260, 159-174.	2.5	100
74	Distinctive Features of NREM Parasomnia Behaviors in Parkinson's Disease and Multiple System Atrophy. PLoS ONE, 2015, 10, e0120973.	2.5	7
75	Design of a novel closed-loop deep brain stimulation system for Parkinson's disease and obsessive-compulsive disorder. , 2015, , .		2
76	Resting electroencephalographic correlates of the clinical response to repetitive transcranial magnetic stimulation: A preliminary comparison between unipolar and bipolar depression. Journal of Affective Disorders, 2015, 183, 15-21.	4.1	30
77	Influence de la stimulation cérébrale profonde du noyau sous-thalamique dans le trouble obsessionnel compulsif sur deux formes d'impulsivité. European Psychiatry, 2015, 30, S119-S120.	0.2	0
78	Effect of Subthalamic Nucleus Stimulation on Penicillin Induced Focal Motor Seizures in Primate. Brain Stimulation, 2015, 8, 177-184.	1.6	23
79	Localization of Epileptogenic Zone on Pre-surgical Intracranial EEG Recordings: Toward a Validation of Quantitative Signal Analysis Approaches. Brain Topography, 2015, 28, 832-837.	1.8	58
80	Estimating Biophysical Parameters from BOLD Signals through Evolutionary-Based Optimization. Lecture Notes in Computer Science, 2015, , 528-535.	1.3	3
81	Modular architecture of a multi-frequency electrical impedance tomography system: Design and implementation. , 2014, 2014, 6076-9.		0
82	Inhibitory control and error monitoring by human subthalamic neurons. Translational Psychiatry, 2014, 4, e439-e439.	4.8	62
83	The pivotal role of the supplementary motor area in startle epilepsy as demonstrated by <scp>SEEG</scp> epileptogenicity maps. Epilepsia, 2014, 55, e85-8.	5.1	32
84	Long Term Effects of Low Frequency (10ÂHz) Vagus Nerve Stimulation on EEG and Heart Rate Variability in Crohn's Disease: A Case Report. Brain Stimulation, 2014, 7, 914-916.	1.6	35
85	P299 Vagus nerve stimulation in Crohn's disease. Journal of Crohn's and Colitis, 2014, 8, S188-S189.	1.3	1
86	Changes of oscillatory activity in the subthalamic nucleus during obsessive-compulsive disorder symptoms: Two case reports. Cortex, 2014, 60, 145-150.	2.4	28
87	Changes of oscillatory brain activity induced by repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in healthy subjects. NeuroImage, 2014, 88, 91-99.	4.2	43
88	Subthalamic nucleus activity dissociates proactive and reactive inhibition in patients with Parkinson's disease. NeuroImage, 2014, 91, 273-281.	4.2	77
89	Long-term modifications of epileptogenesis and hippocampal rhythms after prolonged hyperthermic seizures in the mouse. Neurobiology of Disease, 2014, 69, 156-168.	4.4	11
90	Inversion without Explicit Jacobian Calculations in Electrical Impedance Tomography. Journal of Physics: Conference Series, 2014, 542, 012002.	0.4	1

#	Article	IF	CITATIONS
91	Neural Adaptation to Responsive Stimulation: A Comparison of Auditory and Deep Brain Stimulation in a Rat Model of Absence Epilepsy. Brain Stimulation, 2013, 6, 241-247.	1.6	25
92	Design, fabrication and modeling of a cuff electrode for peripheral nerve stimulation. , 2013, , .		3
93	Synchrotron X-ray interlaced microbeams suppress paroxysmal oscillations in neuronal networks initiating generalized epilepsy. Neurobiology of Disease, 2013, 51, 152-160.	4.4	24
94	Deep Brain Stimulation for Obsessive-Compulsive Disorder: Subthalamic Nucleus Target. World Neurosurgery, 2013, 80, S31.e1-S31.e8.	1.3	92
95	Probabilistic functional tractography of the human cortex. NeuroImage, 2013, 80, 307-317.	4.2	86
96	Temporal Components in the Parahippocampal Place Area Revealed by Human Intracerebral Recordings. Journal of Neuroscience, 2013, 33, 10123-10131.	3.6	44
97	Prognostic value of insular lobe involvement in temporal lobe epilepsy: A stereoelectroencephalographic study. Epilepsia, 2013, 54, 1658-1667.	5.1	51
98	Pedunculopontine Nucleus Area Oscillations during Stance, Stepping and Freezing in Parkinson's Disease. PLoS ONE, 2013, 8, e83919.	2.5	70
99	Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data. Reviews in the Neurosciences, 2012, 23, 85-95.	2.9	60
100	Dynamic Causal Modeling of Spatiotemporal Integration of Phonological and Semantic Processes: An Electroencephalographic Study. Journal of Neuroscience, 2012, 32, 4297-4306.	3.6	47
101	The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials. Brain, 2012, 135, 2263-2276.	7.6	42
102	The danger of systematic bias in group-level FMRI-lag-based causality estimation. NeuroImage, 2012, 59, 1228-1229.	4.2	54
103	Modeling of the Neurovascular Coupling in Epileptic Discharges. Brain Topography, 2012, 25, 136-156.	1.8	23
104	A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings. Journal of Neuroscience Methods, 2012, 204, 306-317.	2.5	21
105	fMRI connectivity, meaning and empiricism. NeuroImage, 2011, 58, 306-309.	4.2	44
106	Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage, 2011, 58, 312-322.	4.2	266
107	Cortical Stimulation of the Epileptogenic Zone for the Treatment of Focal Motor Seizures: An Experimental Study in the Nonhuman Primate. Neurosurgery, 2011, 68, 482-490.	1.1	14
108	Directed Differential Connectivity Graph of Interictal Epileptiform Discharges. IEEE Transactions on Biomedical Engineering, 2011, 58, 884-893.	4.2	22

#	Article	IF	CITATIONS
109	Relationship Between Flow and Metabolism in BOLD Signals: Insights from Biophysical Models. Brain Topography, 2011, 24, 40-53.	1.8	11
110	Subthalamic neuronal firing in obsessiveâ€compulsive disorder and Parkinson disease. Annals of Neurology, 2011, 69, 793-802.	5.3	52
111	Dynamic Causal Modeling of Subcortical Connectivity of Language. Journal of Neuroscience, 2011, 31, 2712-2717.	3.6	57
112	Imaging the seizure onset zone with stereo-electroencephalography. Brain, 2011, 134, 2898-2911.	7.6	162
113	Multimodal imaging reveals the role of activity in eating-reflex seizures. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1171-1173.	1.9	35
114	Characterization of the hemodynamic modes associated with interictal epileptic activity using a deformable modelâ€based analysis of combined EEG and functional MRI recordings. Human Brain Mapping, 2010, 31, 1157-1173.	3.6	42
115	Studying Network Mechanisms Using Intracranial Stimulation in Epileptic Patients. Frontiers in Systems Neuroscience, 2010, 4, 148.	2.5	71
116	Comparison of five directed graph measures for identification of leading interictal epileptic regions. Physiological Measurement, 2010, 31, 1529-1546.	2.1	11
117	Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy. Journal of Neuroscience, 2010, 30, 16523-16535.	3.6	54
118	Impaired fMRI activation in patients with primary brain tumors. NeuroImage, 2010, 52, 538-548.	4.2	76
119	Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation. NeuroImage, 2010, 52, 1456-1464.	4.2	53
120	Manipulating theÂepileptic brain using stimulation: aÂreview ofÂexperimental andÂclinical studies. Epileptic Disorders, 2009, 11, 100-112.	1.3	54
121	A Multi-channel platform for recording and stimulation of large neuronal structures. Irbm, 2009, 30, 226-233.	5.6	6
122	Directed epileptic network from scalp and intracranial EEG of epileptic patients. , 2009, , .		4
123	Closed-loop control of seizures in a rat model of absence epilepsy using the BioMEA™ system. , 2009, , .		5
124	Preictal short-term plasticity induced by intracerebral 1ÂHz stimulation. NeuroImage, 2008, 39, 1633-1646.	4.2	50
125	Rapid Interactions between the Ventral Visual Stream and Emotion-Related Structures Rely on a Two-Pathway Architecture. Journal of Neuroscience, 2008, 28, 2793-2803.	3.6	129
126	Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation. PLoS Biology, 2008, 6, e315.	5.6	462

#	Article	IF	CITATIONS
127	A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI. NeuroImage, 2007, 38, 124-137.	4.2	104
128	Neuronal models of EEG and MEG. , 2007, , 414-440.		2
129	Controlling seizures is not controlling epilepsy: A parametric study of deep brain stimulation for epilepsy. Neurobiology of Disease, 2007, 27, 292-300.	4.4	66
130	Dynamic causal models of neural system dynamics: current state and future extensions. Journal of Biosciences, 2007, 32, 129-144.	1.1	201
131	Neuronal models of ensemble dynamics. , 2007, , 391-405.		1
132	Dynamic causal models for EEC. , 2007, , 561-576.		3
133	Dynamic Causal Models and Autopoietic Systems. Biological Research, 2007, 40, .	3.4	10
134	Neuronal models of energetics. , 2007, , 406-413.		0
135	Dynamic causal models and autopoietic systems. Biological Research, 2007, 40, 487-502.	3.4	6
136	Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage, 2006, 30, 1255-1272.	4.2	563
137	Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage, 2006, 30, 1273-1284.	4.2	209
138	Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage, 2006, 31, 1580-1591.	4.2	246
139	Models of Functional Neuroimaging Data. Current Medical Imaging, 2006, 2, 15-34.	0.8	15
140	Stochastic models of neuronal dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1075-1091.	4.0	64
141	Modeling Brain Responses. International Review of Neurobiology, 2005, 66, 89-124.	2.0	21
142	Modelling event-related responses in the brain. NeuroImage, 2005, 25, 756-770.	4.2	275
143	Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage, 2004, 21, 659-673.	4.2	332
144	Waves of consciousness: ongoing cortical patterns during binocular rivalry. NeuroImage, 2004, 23, 128-140.	4.2	104

#	Article	IF	CITATIONS
145	Voxel-Based Mapping of Cortical Ischemic Damage Using Tc 99M L,L-Ethyl Cysteinate Dimer Spect in Acute Stroke. , 2004, 14, 23-32.		2
146	A multitrial analysis for revealing significant corticocortical networks in magnetoencephalography and electroencephalography. NeuroImage, 2003, 20, 186-201.	4.2	40
147	A neural mass model for MEG/EEG:. NeuroImage, 2003, 20, 1743-1755.	4.2	613
148	Time-Coherent Expansion of MEG/EEG Cortical Sources. NeuroImage, 2002, 17, 1277-1289.	4.2	21
149	Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony. IEEE Transactions on Biomedical Engineering, 2002, 49, 975-987.	4.2	76