Surajit Some

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7551967/publications.pdf

Version: 2024-02-01

186265 189892 2,565 58 28 50 h-index citations g-index papers 64 64 64 4278 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process. Scientific Reports, 2013, 3, 1929.	3.3	236
2	Highly Airâ€Stable Phosphorusâ€Doped nâ€Type Graphene Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 5481-5486.	21.0	195
3	Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes. Scientific Reports, 2013, 3, 1868.	3.3	178
4	Dual Functions of Highly Potent Graphene Derivative–Poly- <scp>l</scp> -Lysine Composites To Inhibit Bacteria and Support Human Cells. ACS Nano, 2012, 6, 7151-7161.	14.6	141
5	Organocatalytic Enantioselective Michaelâ€Addition of Malonic Acid Halfâ€Thioesters to βâ€Nitroolefins: From Mimicry of Polyketide Synthases to Scalable Synthesis of γâ€Amino Acids. Advanced Synthesis and Catalysis, 2011, 353, 3196-3202.	4.3	128
6	Cancer Therapy Using Ultrahigh Hydrophobic Drug-Loaded Graphene Derivatives. Scientific Reports, 2014, 4, 6314.	3.3	108
7	Hydrogen bonding mediated enantioselective organocatalysis in brine: significant rate acceleration and enhanced stereoselectivity in enantioselective Michael addition reactions of 1,3-dicarbonyls to \hat{l}^2 -nitroolefins. Chemical Communications, 2011, 47, 9621.	4.1	102
8	Deep Eutectic Solvent Functionalized Graphene Composite as an Extremely High Potency Flame Retardant. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35319-35324.	8.0	88
9	Phosphorusâ€Doped Graphene Oxide Layer as a Highly Efficient Flame Retardant. Chemistry - A European Journal, 2015, 21, 15480-15485.	3.3	85
10	Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chemistry and Engineering, 2019, 7, 11745-11753.	6.7	78
11	A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chemical Communications, 2012, 48, 913-915.	4.1	77
12	Novel approach towards the synthesis of carbon-based transparent highly effective flame retardant. Carbon, 2018, 139, 205-209.	10.3	75
13	Highly hydrophilic and insulating fluorinated reduced graphene oxide. Chemical Communications, 2013, 49, 8991.	4.1	59
14	Enantioselective Alcoholysis of <i>meso</i> â€Glutaric Anhydrides Catalyzed by <i>Cinchona</i> â€Based Sulfonamide Catalysts. Advanced Synthesis and Catalysis, 2010, 352, 2211-2217.	4.3	57
15	Binol salt as a completely removable graphene surfactant. Chemical Communications, 2012, 48, 7732.	4.1	54
16	Synthesis of substituted benzene derivatives by homo- and hetero-coupling of 2-bromobenzaldehyde and bromovinylaldehydes followed by McMurry coupling. Tetrahedron Letters, 2006, 47, 1221-1224.	1.4	50
17	Oneâ€Pot Synthesis of Sulfur and Nitrogen Coâ€Functionalized Graphene Material using Deep Eutectic Solvents for Supercapacitors. ChemSusChem, 2019, 12, 3326-3335.	6.8	44
18	New protocols for the synthesis of 3,4-annulated and 4-substituted quinolines from \hat{l}^2 -bromo- \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes and 1-bromo-2-nitrobenzene or 2-bromoacetanilide. Tetrahedron Letters, 2007, 48, 3609-3612.	1.4	40

#	Article	IF	CITATIONS
19	Can Commonly Used Hydrazine Produce nâ€Type Graphene?. Chemistry - A European Journal, 2012, 18, 7665-7670.	3.3	39
20	Graphene oxide as a recyclable phase transfer catalyst. Chemical Communications, 2013, 49, 5702.	4.1	39
21	Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells. Scientific Reports, 2016, 6, 20015.	3.3	38
22	Tunable wide blue photoluminescence with europium decorated graphene. Journal of Materials Chemistry C, 2015, 3, 4030-4038.	5. 5	36
23	Graphene-based intumescent flame retardant on cotton fabric. Journal of Materials Science, 2020, 55, 14197-14210.	3.7	36
24	A novel chemical reduction/co-precipitation method to prepare sulfur functionalized reduced graphene oxide for lithium-sulfur batteries. Electrochimica Acta, 2020, 344, 136147.	5.2	35
25	Graphene-bentonite supported free-standing, flexible membrane with switchable wettability for selective oil–water separation. Separation and Purification Technology, 2021, 266, 118569.	7.9	34
26	Efficient Direct Reduction of Graphene Oxide by Silicon Substrate. Scientific Reports, 2015, 5, 12306.	3.3	32
27	Effect of morphological ordering on the electrochemical performance of MnO2-Graphene oxide composite. Electrochimica Acta, 2019, 317, 199-210.	5. 2	31
28	Thermal cyclization of 3-arylamino-3-(2-nitrophenyl)-propenal Schiff base hydrochlorides followed by triethyl phosphite mediated deoxygenation: a facile synthesis of quindolines. Tetrahedron Letters, 2006, 47, 377-379.	1.4	30
29	Synthesis of Aqueous Dispersible Reduced Graphene Oxide by the Reduction of Graphene Oxide in Presence of Carbonic Acid. ChemistrySelect, 2018, 3, 5630-5638.	1.5	30
30	Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(<scp>ii</scp>). New Journal of Chemistry, 2021, 45, 4617-4625.	2.8	29
31	Chemoselective arylamination of \hat{l}^2 -bromovinylaldehydes followed by acid catalyzed cyclization: a general method for polycyclic quinolines. Tetrahedron Letters, 2007, 48, 5013-5016.	1.4	28
32	Biomassâ€Derived Lignocellulosic Graphene Composite: Novel Approach for Removal of Oil and Organic Solvent. ChemistrySelect, 2019, 4, 4568-4574.	1.5	27
33	Wasteâ€Derived Heteroatomâ€Doped Activated Carbon/Manganese Dioxide Trioâ€Composite for Supercapacitor Applications. Energy Technology, 2020, 8, 1901402.	3.8	27
34	Synthesis of sulfur doped carbon nanoparticle for the improvement of supercapacitive performance. Journal of Energy Storage, 2020, 32, 101783.	8.1	24
35	Bio-derived efficient flame-retardants for cotton fabric. Cellulose, 2022, 29, 3583-3593.	4.9	24
36	Novel approach towards the synthesis of highly efficient flame retardant electrode and oil/organic solvent absorber. Chemosphere, 2020, 246, 125785.	8.2	21

#	Article	IF	CITATIONS
37	MnO2@Polyaniline-CNT-boron-doped graphene as a freestanding binder-free electrode material for supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 8385-8393.	2.2	21
38	Oneâ€Pot Synthetic Approach for Magnetically Separable Graphene Nanocomposite for Dye Degradation. ChemistrySelect, 2020, 5, 1516-1525.	1.5	19
39	Graphene Derivative As a Highly Efficient Nitrosonium Source: A Reusable Catalyst for Diazotization and Coupling Reaction. ChemistrySelect, 2016, 1, 6933-6940.	1.5	18
40	Sensitivity Enhancement in Nickel Hydroxide/3Dâ€Craphene as Enzymeless Glucose Detection. Electroanalysis, 2015, 27, 2363-2370.	2.9	16
41	Fast synthesis of high-quality reduced graphene oxide at room temperature under light exposure. Nanoscale, 2014, 6, 11322-11327.	5.6	15
42	Graphene Oxide Promoted Oxidative Bromination of Anilines and Phenols in Water. Journal of Organic Chemistry, 2018, 83, 7388-7397.	3.2	15
43	Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures. Polymer Testing, 2020, 90, 106743.	4.8	15
44	Remediation of Toxic Dye Pollutants by Using Grapheneâ∈Based Adsorbents. ChemistrySelect, 2020, 5, 8062-8073.	1.5	12
45	Eco-friendly biowaste-derived graphitic carbon as black pigment for conductive paint. Progress in Organic Coatings, 2020, 147, 105872.	3.9	12
46	Oneâ€step Preparation of Conducting Polymer/Metal Oxide Doped RGO Trinary Composite for Supercapacitor Applications. ChemistrySelect, 2020, 5, 11769-11777.	1.5	10
47	The Effect of Bioâ€inspired Coâ€electrolytes for Enhancement of Electrochemical Properties of Supercapacitors. Energy and Environmental Materials, 2020, 3, 429-435.	12.8	9
48	Self-Association-Free and Recyclable, Dimeric Cinchona Alkaloid Organocatalysts for Methanolytic Desymmetrization of meso-Glutaric Anhydrides. Bulletin of the Korean Chemical Society, 2011, 32, 3127-3129.	1.9	9
49	Ultrasoundâ€Promoted Enantioselective Decarboxylative Protonation of αâ€Aminomalonate Hemiesters by Chiral Squaramides: A Practical Approach to Both Enantiomers of αâ€Amino Esters. European Journal of Organic Chemistry, 2017, 2017, 4562-4565.	2.4	7
50	Novel bio-inspired deep eutectic solvent and graphene functionalized deep eutectic solvent as an efficient flame retardant material for cotton fabric. Cellulose, 2021, 28, 11199-11208.	4.9	6
51	Heat resistive, binderâ€free 3dâ€dough composite as a highly potent flameâ€retardant. Journal of Applied Polymer Science, 2022, 139, .	2.6	6
52	Synthesis of Iodineâ€Functionalized Graphene Electrocatalyst Using Deep Eutectic Solvents for Oxygen Reduction Reaction and Supercapacitors. Energy Technology, 2021, 9, 2000750.	3.8	5
53	Greener approach towards the synthesis of graphene nanosheet and its application in supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 13100-13107.	2.2	5
54	Boron Nitride doped Chitosan Functionalized Graphene for an Efficient Dye Degradation. ChemistrySelect, 2021, 6, 7956-7963.	1.5	4

#	Article	IF	CITATIONS
55	Synthesis of biowaste derived ultra-light spongy material for the studies of effective removal of oil, organic solvent and selective dye pollutant from waste stream. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102426.	3.1	4
56	Heteroaryl Radicals: A Furyl Radical in the Synthesis of the Tricyclic ÂFramework of Eremophilane Sesquiterpenoids. Synlett, 2005, 2005, 1951-1953.	1.8	2
57	Frontispiece: Phosphorus-Doped Graphene Oxide Layer as a Highly Efficient Flame Retardant. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	O
58	Synthesis of High Concentration Stable Water Dispersion of Exfoliated Activated Graphite for Supercapacitor Application. ChemistrySelect, 2021, 6, 5949-5953.	1.5	0