Robin R Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7551463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delegation or Collaboration: Understanding Different Construction Stakeholders' Perceptions of Robotization. Journal of Management in Engineering - ASCE, 2022, 38, .	4.8	19
2	An analysis of international use of robots for COVID-19. Robotics and Autonomous Systems, 2022, 148, 103922.	5.1	13
3	Al reflections in 2021. Nature Machine Intelligence, 2022, 4, 5-10.	16.0	0
4	The Role of Robotics in Achieving the United Nations Sustainable Development Goals—The Experts' Meeting at the 2021 IEEE/RSJ IROS Workshop [Industry Activities]. IEEE Robotics and Automation Magazine, 2022, 29, 92-107.	2.0	11
5	Co-bots get the good jobs while workers get a human-robot interaction nightmare. Science Robotics, 2022, 7, eabp8431.	17.6	0
6	The droids in <i>The Mandalorian</i> and <i>The Book of Boba Fett</i> are not wild enough for the real world. Science Robotics, 2022, 7, eabq3893.	17.6	0
7	Autonomous Visual Assistance for Robot Operations Using a Tethered UAV. Springer Proceedings in Advanced Robotics, 2021, , 15-29.	1.3	11
8	<i>R.U.R.</i> versus <i>Q.U.R.</i> . Science Robotics, 2021, 6, .	17.6	0
9	Progress in robotics for combating infectious diseases. Science Robotics, 2021, 6, .	17.6	67
10	Planetary rovers in science fiction. Science Robotics, 2021, 6, .	17.6	1
11	Medical Robots for Infectious Diseases: Lessons and Challenges from the COVID-19 Pandemic. IEEE Robotics and Automation Magazine, 2021, 28, 18-27.	2.0	47
12	Robots have grasped and manipulated the imagination since 1839. Science Robotics, 2021, 6, .	17.6	2
13	Robot mothers in science fiction. Science Robotics, 2021, 6, .	17.6	0
14	Robots, science fiction, and nuclear accidents. Science Robotics, 2021, 6, .	17.6	0
15	Swarm robots in science fiction. Science Robotics, 2021, 6, .	17.6	1
16	Best Viewpoints for External Robots or Sensors Assisting Other Robots. IEEE Transactions on Human-Machine Systems, 2021, 51, 324-334.	3.5	8
17	Data Augmentation for Improving Deep Learning Models in Building Inspections or Postdisaster Evaluation. Journal of Performance of Constructed Facilities, 2021, 35, .	2.0	7
18	By the time we build robots that care for us, will we be able to care for them?. Science Robotics, 2021, 6, eabj9789.	17.6	2

#	Article	IF	CITATIONS
19	Best and Worst External Viewpoints for Teleoperation Visual Assistance. , 2021, , .		1
20	Robot intelligence and applications are as varied as animal intelligence, so why not treat them the same way?. Science Robotics, 2021, 6, eabn0877.	17.6	2
21	Roboticists should never look at their creations in the same way again. Science Robotics, 2020, 5, .	17.6	1
22	Field Methods to Quantify Emergency Responder Fatigue: Lessons Learned from sUAS Deployment at the 2018 Kilauea Volcano Eruption. IISE Transactions on Occupational Ergonomics and Human Factors, 2020, 8, 166-174.	0.8	10
23	Robots and pandemics in science fiction. Science Robotics, 2020, 5, .	17.6	6
24	Combating COVID-19—The role of robotics in managing public health and infectious diseases. Science Robotics, 2020, 5, .	17.6	393
25	Robot Risk-Awareness by Formal Risk Reasoning and Planning. IEEE Robotics and Automation Letters, 2020, 5, 2856-2863.	5.1	9
26	Autonomous cars in science fiction. Science Robotics, 2020, 5, .	17.6	2
27	Visual Pose Estimation of Rescue Unmanned Surface Vehicle From Unmanned Aerial System. Frontiers in Robotics and Al, 2019, 6, 42.	3.2	8
28	Benchmarking Tether-based UAV Motion Primitives. , 2019, , .		9
29	Preventing Irrigation Canal Breaches Using Small Unmanned Aerial System with Multispectral Payload. , 2019, , .		4
30	Explicit Motion Risk Representation. , 2019, , .		4
31	Robot learning in science fiction. Science Robotics, 2019, 4, .	17.6	1
32	Computer vision and machine learning in science fiction. Science Robotics, 2019, 4, .	17.6	11
33	The real <i>Alita: Battle Angel</i> cyborgs. Science Robotics, 2019, 4, .	17.6	2
34	Explainable robotics in science fiction. Science Robotics, 2019, 4, .	17.6	3
35	Astromech robots in <i>Star Wars</i> . Science Robotics, 2018, 3, .	17.6	4
36	<i>Westworld</i> and the uncanny valley. Science Robotics, 2018, 3, .	17.6	3

3

#	Article	IF	CITATIONS
37	<i>Pacific Rim</i> and exoskeletons. Science Robotics, 2018, 3, .	17.6	1
38	Motion Planning for a UAV with a Straight or Kinked Tether. , 2018, , .		14
39	Theoretical Limitations of Visual Navigation of Lifesaving USV using Small UAS. , 2018, , .		3
40	Flooded Area Detection from Uav Images Based on Densely Connected Recurrent Neural Networks. , 2018, , .		35
41	Smart houses and domotics. Science Robotics, 2018, 3, .	17.6	5
42	Quantitative Data Analysis: CRASAR Small Unmanned Aerial Systems at Hurricane Harvey. , 2018, , .		14
43	Use of Small Unmanned Aerial Systems for Tactical Response during Kilauea Volcano Lower East Rift Zone event. , 2018, , .		1
44	User Interface for Unmanned Surface Vehicles Used to Rescue Drowning Victims. , 2018, , .		9
45	Indoor UAV Localization Using a Tether. , 2018, , .		28
46	Potential Field Implementation for Move-to-Victim Behavior for a Lifeguard Assistant Unmanned Surface Vehicle. , 2018, , .		4
47	The 50th anniversary of <i>2001: A Space Odyssey</i> . Science Robotics, 2018, 3, .	17.6	Ο
48	Meet L3-37, an elite self-modifying robot in <i>Solo: A Star Wars Movie</i> . Science Robotics, 2018, 3, .	17.6	1
49	A review on cybersecurity vulnerabilities for unmanned aerial vehicles. , 2017, , .		136
50	Autonomous observation of multiple USVs from UAV while prioritizing camera tilt and yaw over UAV motion. , 2017, , .		3
51	Visual servoing for teleoperation using a tethered UAV. , 2017, , .		18
52	Visual pose stabilization of tethered small unmanned aerial system to assist drowning victim recovery. , 2017, , .		10
53	UAV assisted USV visual navigation for marine mass casualty incident response. , 2017, , .		59
54	Artificial potential field implementation of flying animal gap-aiming behavior in 3D. , 2016, , .		0

#	Article	IF	CITATIONS
55	Visual pose estimation of USV from UAV to assist drowning victims recovery. , 2016, , .		21
56	A man-packable unmanned surface vehicle for radiation localization and forensics. , 2015, , .		4
57	Robots need humans in the loop to improve the hopefulness of disaster survivors. , 2015, , .		4
58	A Reference Architecture for Social Head Gaze Generation in Social Robotics. International Journal of Social Robotics, 2015, 7, 601-616.	4.6	5
59	Evaluation of Head Gaze Loosely Synchronized With Real-Time Synthetic Speech for Social Robots. IEEE Transactions on Human-Machine Systems, 2014, 44, 767-778.	3.5	7
60	Disaster Robotics. , 2014, , .		233
61	Interacting with trapped victims using robots. , 2013, , .		7
62	Where to look and who to be Designing attention and identity for search-and-rescue robots. , 2013, , .		5
63	Comfortable approach distance with small Unmanned Aerial Vehicles. , 2013, , .		41
64	A preliminary model for comfortable approach distance based on environmental conditions and personal factors. , 2012, , .		9
65	A Midsummer Night's Dream (with flying robots). Autonomous Robots, 2011, 30, 143-156.	4.8	23
66	A rapidly reconfigurable robot for assistance in urban search and rescue. , 2011, , .		8
67	Responses to robot social roles and social role framing. , 2011, , .		29
68	A rapidly reconfigurable robot for assistance in urban search and rescue. , 2011, , .		4
69	Human–Robot Interaction. IEEE Robotics and Automation Magazine, 2010, 17, 85-89.	2.0	45
70	Tutorial: Cognitive analysis methods applied to human-robot interaction. , 2010, , .		0
71	Rescue robots at the Collapse of the municipal archive of Cologne City: A field report. , 2010, , .		26
72	HRI 2010 workshop 3: Learning and adaptation of humans in HRI. , 2010, , .		0

5

#	Article	IF	CITATIONS
73	Sensing Assessment in Unknown Environments: A Survey. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40, 1-12.	2.9	13
74	Survivor Buddy and SciGirls: Affect, outreach, and questions. , 2010, , .		0
75	A Midsummer Night's Dream: Social proof in HRI. , 2010, , .		4
76	Mobile robots in mine rescue and recovery. IEEE Robotics and Automation Magazine, 2009, 16, 91-103.	2.0	195
77	Underground Mine Communications: A Survey. IEEE Communications Surveys and Tutorials, 2009, 11, 125-142.	39.4	128
78	Unmanned marine vehicle use at Hurricanes Wilma and Ike. , 2009, , .		20
79	Design and Field Evaluation of a Mission Specialist Interface for Small Unmanned Aerial Systems. International Journal of Social Robotics, 0, , .	4.6	0