
Rosa Carabaño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Dietary Insoluble and Soluble Fibre on Growth Performance, Digestibility, and Nitrogen, Energy, and Mineral Retention Efficiency in Growing Rabbits. Animals, 2020, 10, 1346.	1.0	3
2	Effect of dietary soluble fibre level and n-6/n-3 fatty acid ratio on digestion and health in growing rabbits. Animal Feed Science and Technology, 2019, 255, 114222.	1.1	4
3	Effect of pre- and post-weaning dietary supplementation with arginine and glutamine on rabbit performance and intestinal health. BMC Veterinary Research, 2019, 15, 199.	0.7	9
4	Effect of arginine and glutamine supplementation on performance, health and nitrogen and energy balance in growing rabbits. Animal Feed Science and Technology, 2019, 247, 63-73.	1.1	3
5	Effect of level of soluble fiber and n-6/n-3 fatty acid ratio on performance of rabbit does and their litters. Journal of Animal Science, 2018, 96, 1084-1100.	0.2	7
6	The effect of cellobiose on the health status of growing rabbits depends on the dietary level of soluble fiber. Journal of Animal Science, 2018, 96, 1806-1817.	0.2	8
7	Effect of cellobiose supplementation and dietary soluble fibre content on <i>in vitro</i> caecal fermentation of carbohydrate-rich substrates in rabbits. Archives of Animal Nutrition, 2018, 72, 221-238.	0.9	6
8	Effect of dietary soluble fibre and n-6/n-3 fatty acid ratio on growth performance and nitrogen and energy retention efficiency in growing rabbits. Animal Feed Science and Technology, 2018, 239, 44-54.	1.1	13
9	In vitro caecal fermentation of carbohydrate-rich feedstuffs in rabbits as affected by substrate pre-digestion and donors' diet. World Rabbit Science, 2018, 26, 15.	0.1	4
10	Influence of inoculum type (ileal, caecal and faecal) on the in vitro fermentation of different sources of carbohydrates in rabbits. World Rabbit Science, 2018, 26, 227.	0.1	4
11	Effect of dietary supplementation with arginine and glutamine on the performance of rabbit does and their litters during the first three lactations. Animal Feed Science and Technology, 2017, 227, 84-94.	1.1	6
12	Nitrogen and amino acid ileal and faecal digestibility of rabbit feeds predicted by an in vitro method. Animal Feed Science and Technology, 2016, 219, 210-215.	1.1	0
13	Effect of type of fiber, site of fermentation, and method of analysis on digestibility of soluble and insoluble fiber in rabbits1. Journal of Animal Science, 2015, 93, 2860-2871.	0.2	20
14	lleal vs. faecal amino acid digestibility in concentrates and fibrous sources for rabbit feed formulation. Animal Feed Science and Technology, 2013, 182, 100-110.	1.1	6
15	Quantification of soluble fibre in feedstuffs for rabbits and evaluation of the interference between the determinations of soluble fibre and intestinal mucin. Animal Feed Science and Technology, 2013, 182, 61-70.	1.1	18
16	A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Science, 2013, 21, .	0.1	40
17	Nutritional digestive disturbances in weaner rabbits. Animal Feed Science and Technology, 2012, 173, 102-110.	1.1	18
18	Effect of dietary type and level of fibre on rabbit carcass yield and its microbiological characteristics. Livestock Science, 2012, 145, 7-12.	0.6	11

Rosa Carabaño

#	Article	IF	CITATIONS
19	Effect of the increase of dietary starch and soluble fibre on digestive efficiency and growth performance of meat rabbits. Animal Feed Science and Technology, 2011, 165, 265-277.	1.1	25
20	Determination of faecal dry matter digestibility two weeks after weaning in twenty five day old weaned rabbits. World Rabbit Science, 2011, 19, .	0.1	3
21	Interactive methodology improves the learning process for engineering students. Procedia, Social and Behavioral Sciences, 2010, 2, 2750-2754.	0.5	Ο
22	Effect of dietary supplementation with glutamine and a combination of glutamine-arginine on intestinal health in twenty-five-day-old weaned rabbits1. Journal of Animal Science, 2010, 88, 170-180.	0.2	49
23	Effect of level of fibre and type of grinding on the performance of rabbit does and their litters during the first three lactations. Livestock Science, 2010, 129, 186-193.	0.6	11
24	The digestive system of the rabbit , 2010, , 1-18.		26
25	Fibre digestion , 2010, , 66-82.		19
26	Protein digestion , 2010, , 39-55.		4
27	Evolution of a feed formulation practice in a mandatory course on animal production. Procedia, Social and Behavioral Sciences, 2009, 1, 1797-1801.	0.5	2
28	Effect of neutral detergent soluble fibre on digestion, intestinal microbiota and performance in twenty five day old weaned rabbits. Livestock Science, 2009, 125, 192-198.	0.6	50
29	Prediction of the nutritional value of European compound feeds for rabbits by chemical components and in vitro analysis. Animal Feed Science and Technology, 2009, 150, 283-294.	1.1	39
30	Effect of substitution of a soybean hull and grape seed meal mixture for traditional fiber sources on digestion and performance of growing rabbits and lactating does1. Journal of Animal Science, 2007, 85, 181-187.	0.2	22
31	Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits1. Journal of Animal Science, 2007, 85, 3313-3321.	0.2	79
32	Effect on digestion and performance of dietary protein content and of increased substitution of lucerne hay with soya-bean protein concentrate in starter diets for young rabbits. Animal, 2007, 1, 651-659.	1.3	40
33	Effect of a reduction of dietary particle size by substituting a mixture of fibrous by-products for lucerne hay on performance and digestion of growing rabbits and lactating does. Livestock Science, 2006, 100, 242-250.	0.6	18
34	Transitory disturbances in growing lactating rabbits after transient doe-litter separation. Reproduction, Nutrition, Development, 2004, 44, 437-447.	1.9	6
35	Prediction of chemical composition, nutritive value and ingredient composition of European compound feeds for rabbits by near infrared reflectance spectroscopy (NIRS). Animal Feed Science and Technology, 2003, 104, 153-168.	1.1	41
36	Effect of protein source on digestion and growth performance of early-weaned rabbits. Animal Research, 2003, 52, 461-471.	0.6	33

Rosa Carabaño

#	Article	IF	CITATIONS
37	Effects of starch and protein sources, heat processing, and exogenous enzymes in starter diets for early weaned rabbits. Animal Feed Science and Technology, 2002, 98, 175-186.	1.1	23
38	The effect of remating interval and weaning age on the reproductive performance of rabbit does. Animal Research, 2002, 51, 517-523.	0.6	11
39	Nutritive evaluation and ingredient prediction of compound feeds for rabbits by near-infrared reflectance spectroscopy (NIRS). Animal Feed Science and Technology, 1999, 77, 201-212.	1.1	26
40	Performance response of lactating and growing rabbits to dietary lignin content. Animal Feed Science and Technology, 1999, 80, 43-54.	1.1	40
41	Role of fibre in rabbit diets. A review. Animal Research, 1999, 48, 3-13.	0.6	63
42	Substitution of sugarbeet pulp for alfalfa hay in diets for growing rabbits. Animal Feed Science and Technology, 1997, 65, 249-256.	1.1	48
43	Effect of type of lucerne hay on caecal fermentation and nitrogen contribution through caecotrophy in rabbits. Reproduction, Nutrition, Development, 1995, 35, 267-275.	1.9	35
44	Prediction of the digestible energy and digestibility of gross energy of feeds for rabbits. 1. Individual classes of feeds. Animal Feed Science and Technology, 1992, 39, 27-38.	1.1	24
45	Fiber and Starch Levels in Fattening Rabbit Diets. Journal of Animal Science, 1986, 63, 1897-1904.	0.2	55