Magda Titirici

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7550899/magda-titirici-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 27,926 164 274 g-index h-index citations papers 10.8 31,859 7.58 300 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
274	Dual-Metal Atom Electrocatalysts: Theory, Synthesis, Characterization, and Applications (Adv. Energy Mater. 3/2022). <i>Advanced Energy Materials</i> , 2022 , 12, 2270010	21.8	
273	Metal coordination in CN-like materials towards dual atom catalysts for oxygen reduction <i>Journal of Materials Chemistry A</i> , 2022 , 10, 6023-6030	13	1
272	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises High-Power Na-Ion Batteries <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	8
271	Beyond Li-ion batteries: performance, materials diversification, and sustainability. <i>One Earth</i> , 2022 , 5, 207-211	8.1	3
270	Elucidation of the Solid Electrolyte Interphase Formation Mechanism in Micro-Mesoporous Hard-Carbon Anodes (Adv. Mater. Interfaces 8/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270040	4.6	
269	Dual-Metal Atom Electrocatalysts: Theory, Synthesis, Characterization, and Applications. <i>Advanced Energy Materials</i> , 2022 , 12, 2102715	21.8	12
268	Enhancement of the electrocatalytic activity for the oxygen reduction reaction of boron-doped reduced graphene oxide via ultrasonic treatment. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 5462-5462	6.7	2
267	Ultrafast synthesis of hard carbon anodes for sodium-ion batteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	9
266	Monolithic Carbon Spherogels as Freestanding Electrodes for Supercapacitors. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11183-11193	6.1	1
265	Engineering the Electrochemical Interface of Oxygen Reduction Electrocatalysts with Ionic Liquids: A Review. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000062	1.6	1
264	2021 roadmap on lithium sulfur batteries. <i>JPhys Energy</i> , 2021 , 3, 031501	4.9	32
263	High-Density Lignin-Derived Carbon Nanofiber Supercapacitors with Enhanced Volumetric Energy Density. <i>Advanced Science</i> , 2021 , 8, e2100016	13.6	17
262	Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. <i>Biosensors and Bioelectronics</i> , 2021 , 180, 113121	11.8	5
261	Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO Reduction. <i>Advanced Materials</i> , 2021 , 33, e2008373	24	22
260	Investigating the effect of edge and basal plane surface functionalisation of carbonaceous anodes for alkali metal (Li/Na/K) ion batteries. <i>Carbon</i> , 2021 , 177, 226-243	10.4	7
259	2021 roadmap for sodium-ion batteries. <i>JPhys Energy</i> , 2021 , 3, 031503	4.9	24
258	Designer uniform Li plating/stripping through lithiumBobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. <i>Journal of Energy Chemistry</i> , 2021 , 52, 385-392	12	12

(2021-2021)

The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors. <i>Journal of Energy Chemistry</i> , 2021 , 53, 36-48	12	12	
Cobalt Nitride Anchored on Nitrogen-Rich Carbons for Efficient Carbon Dioxide Reduction with Visible Light. <i>Applied Catalysis B: Environmental</i> , 2021 , 280, 119454	21.8	22	
Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. <i>Journal of Energy Chemistry</i> , 2021 , 59, 492-529	12	14	
Atomic Arrangement Modulation in CoFe Nanoparticles Encapsulated in N-Doped Carbon Nanostructures for Efficient Oxygen Reduction Reaction. <i>ACS Applied Materials & Comp. Interfaces</i> , 2021 , 13, 3771-3781	9.5	11	
Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. <i>Scientific Reports</i> , 2021 , 11, 2656	4.9	5	
Carbon Composite Anodes with Tunable Microstructures for Potassium-Ion Batteries. <i>Batteries and Supercaps</i> , 2021 , 4, 663-670	5.6	5	
Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts [] structure lectrochemical activity relationship. <i>Catalysis Science and Technology</i> , 2021 , 11, 6191-6204	5.5	1	
Engineering the Electrochemical Interface of Oxygen Reduction Electrocatalysts with Ionic Liquids: A Review. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2170003	1.6	1	
Sustainable BatteriesQuo Vadis?. Advanced Energy Materials, 2021, 11, 2003700	21.8	20	
Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for Ontoff Metal Ions Nanosensing. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2559-2569	8.3	21	
Carbon-Dot-Enhanced Graphene Field-Effect Transistors for Ultrasensitive Detection of Exosomes. <i>ACS Applied Materials & Detection of Exosomes</i> . 13, 7854-7864	9.5	17	
Disordered carbon anodes for Na-ion batteriesquo vadis?. Science China Chemistry, 2021 , 64, 1679	7.9	9	
Bioderived and bioinspired sustainable materials. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20200329	3		
Correlating Local Structure and Sodium Storage in Hard Carbon Anodes: Insights from Pair Distribution Function Analysis and Solid-State NMR. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14274-14286	16.4	10	
Activated Carbon from Corncobs Doped with RuO2 as Biobased Electrode Material. <i>Electronic Materials</i> , 2021 , 2, 324-343	0.8	2	
Bioderived and bioinspired sustainable materials (vol 2). <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20210214	3		
A life cycle assessment of hard carbon anodes for sodium-ion batteries. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20200340	3	2	
Influence of Reaction Conditions on Hydrothermal Carbonization of Fructose. <i>ChemSusChem</i> , 2021 , 14, 5271-5282	8.3	2	
	aqueous supercapacitors. Journal of Energy Chemistry, 2021, 53, 36-48 Cobalt Nitride Anchored on Nitrogen-Rich Carbons for Efficient Carbon Dioxide Reduction with Visible Light. Applied Catalysis B: Environmental, 2021, 280, 119454 Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529 Atomic Arrangement Modulation in CoFe Nanoparticles Encapsulated in N-Doped Carbon Nanostructures for Efficient Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 3771-3781 Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports, 2021, 11, 2656 Carbon Composite Anodes with Tunable Microstructures for Potassium-Ion Batteries. Batteries and Supercaps, 2021, 4, 663-670 Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts II structurelilectrochemical activity relationship. Catalysis Science and Technology, 2021, 11, 6191-6204 Engineering the Electrochemical Interface of Oxygen Reduction Electrocatalysts with Ionic Liquids: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2170003 Sustainable BatteriesQuo Vadis?. Advanced Energy Materials, 2021, 11, 2003700 Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Blomass Precursor for OnDiff Metal Ions Nanosensing. ACS Sustainable Chemistry and Engineering, 2021, 9, 2559-2569 Carbon-Dot-Enhanced Graphene Field-Effect Transistors for Ultrasensitive Detection of Exosomes. ACS Applied Materials & Amp; Interfaces, 2021, 13, 7854-7864 Disordered carbon anodes for Na-ion batteriesQuo vadis?. Science China Chemistry, 2021, 64, 1679 Bioderived and bioinspired sustainable materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200329 Correlating Local Structure and Sodium Storage in Hard Carbon Anodes: Insig	Active Supercapacitors. Journal of Energy Chemistry, 2021, 53, 36-48 Cobalt Nitride Anchored on Nitrogen-Rich Carbons for Efficient Carbon Dioxide Reduction with Visible Light. Applied Catalysis B. Environmental, 2021, 280, 119454 Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529 12 Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529 13 Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529 14 15 16 17 18 18 19 19 19 10 10 10 11 11 12 12 13 1771-3781 17 18 18 19 19 10 10 10 10 10 10 10 11 11	Activated Carbon Composite Anodes with Tunable Microstructures for Potassium-ton Batteries and Superrops, 2021, 13, 3771-3781 Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports, 2021, 11, 2656 Activate Relectroschemical devices: A review. Journal of Energy Chemistry, 2021, 59, 492-529 Atomic Arrangement Modulation in Cofe Nanoparticles Encapsulated in N-Doped Carbon Nanostructures for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Amp; Interfaces, 2021, 13, 3771-3781 Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports, 2021, 11, 2656 4-9 5 Carbon Composite Anodes with Tunable Microstructures for Potassium-ton Batteries. Batteries and Superrops, 2021, 4, 663-670 Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts II structurefillectrochemical activity relationship. Catalysis Science and Technology, 2021, 11, 6191-6204 5-5 1 Engineering the Electrochemical Interface of Oxygen Reduction Electrocatalysts with Inoinc Liquids: 1.6 1 Review. Advanced Energy and Sustainability Research, 2021, 2, 2170003 Sustainable BatteriesQuo Vadis?. Advanced Energy Materials, 2021, 11, 2003700 21.8 20 Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Blomass Precursor for Onthif Metal Ions Nanosensing. ACS Sustainable Chemistry and Engineering, 2021, 9, 2559-2569 Carbon-Dot-Enhanced Graphene Field-Effect Transistors for Ultrasensitive Detection of Exosomes. ACS Applied Materials & amp; Interfaces, 2021, 13, 7854-7864 Disordered carbon anodes for Na-ion batteriesQuo vadis?. Science China Chemistry, 2021, 64, 1679 7-9 9 Bioderived and bioinspired sustainable materials, Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20210214 Alife cycle assessment of hard carbon anode

239	Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. <i>Molecules</i> , 2020 , 25,	4.8	8
238	Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. <i>ACS Catalysis</i> , 2020 , 10, 7434-7442	13.1	48
237	Electrocatalysis: 3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis (Adv. Energy Mater. 11/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070047	21.8	4
236	Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains. <i>Journal of Cleaner Production</i> , 2020 , 260, 121101	10.3	27
235	Nitrogen-Doped Carbon Dots/TiO2 Nanoparticle Composites for Photoelectrochemical Water Oxidation. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3371-3381	5.6	34
234	Photocatalytic activity of 2D nanosheets of ferroelectric Dionlacobson compounds. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6564-6568	13	9
233	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. <i>Nature Communications</i> , 2020 , 11, 1182	17.4	32
232	Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. <i>Green Chemistry</i> , 2020 , 22, 4747-4800	10	58
231	Monitoring Hydrogen Evolution Reaction Intermediates of Transition Metal Dichalcogenides via Operando Raman Spectroscopy. <i>Advanced Functional Materials</i> , 2020 , 30, 2003035	15.6	33
230	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14690-14696	13	25
229	Heat Diffusion-Induced Gradient Energy Level in Multishell Bisulfides for Highly Efficient Photocatalytic Hydrogen Production. <i>Advanced Energy Materials</i> , 2020 , 10, 2001575	21.8	38
228	Elucidating the Effect of Planar Graphitic Layers and Cylindrical Pores on the Storage and Diffusion of Li, Na, and K in Carbon Materials. <i>Advanced Functional Materials</i> , 2020 , 30, 1908209	15.6	25
227	Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries. <i>EcoMat</i> , 2020 , 2, e12019	9.4	55
226	Fractionation by Sequential Antisolvent Precipitation of Grass, Softwood, and Hardwood Lignins Isolated Using Low-Cost Ionic Liquids and Water. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 3751-3761	8.3	22
225	Operando visualisation of battery chemistry in a sodium-ion battery by Na magnetic resonance imaging. <i>Nature Communications</i> , 2020 , 11, 2083	17.4	36
224	A diverse view of science to catalyse change: valuing diversity leads to scientific excellence, the progress of science and, most importantly, it is simply the right thing to do. We must value diversity not only in words, but also in actions. <i>Canadian Journal of Chemistry</i> , 2020 , 98, 597-600	0.9	1
223	Carbon Dots in Solar-to-Hydrogen Conversion. <i>Trends in Chemistry</i> , 2020 , 2, 623-637	14.8	24
222	Investigating the effects of activating agent morphology on the porosity and related capacitance of nanoporous carbons. <i>CrystEngComm</i> , 2020 , 22, 1560-1567	3.3	5

(2020-2020)

221	Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3270-3	279	30
220	Local mobility in electrochemically inactive sodium in hard carbon anodes after the first cycle. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 743-749	13	17
219	Achieving high volumetric EDLC carbons via hydrothermal carbonization and cyclic activation. <i>JPhys Energy</i> , 2020 , 2, 025005	4.9	1
218	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. <i>Advanced Energy Materials</i> , 2020 , 10, 1902494	21.8	56
217	Photochemical Construction of Nitrogen-Containing Nanocarbons for Carbon Dioxide Photoreduction. <i>ACS Catalysis</i> , 2020 , 10, 12706-12715	13.1	13
216	The role of carbon dots - derived underlayer in hematite photoanodes. <i>Nanoscale</i> , 2020 , 12, 20220-202	2 9 .7	2
215	Towards a More Sustainable Lithium-Ion Battery Future: Recycling LIBs from Electric Vehicles. <i>Batteries and Supercaps</i> , 2020 , 3, 1126-1136	5.6	7
214	Hard carbons for sodium-ion batteries and beyond. <i>Progress in Energy</i> , 2020 , 2, 042002	7.7	38
213	Solvation of NaPF6 in Diglyme Solution for Battery Electrolytes. <i>Batteries and Supercaps</i> , 2020 , 3, 1306-	13.60	5
212	Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms. Journal of Materials Chemistry A, 2020 , 8, 24996-25016	13	28
211	Hybrid Redox Flow Cells with Enhanced Electrochemical Performance via Binderless and Electrophoretically Deposited Nitrogen-Doped Graphene on Carbon Paper Electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 ,	9.5	8
210	A revised mechanistic model for sodium insertion in hard carbons. <i>Energy and Environmental Science</i> , 2020 , 13, 3469-3479	35.4	70
209	Soft templating production of porous carbon adsorbents for CO2 and H2S capture. <i>Carbon</i> , 2020 , 169, 193-204	10.4	13
208	A diverse view of science to catalyse change. <i>Nature Chemistry</i> , 2020 , 12, 773-776	17.6	7
207	Hardwood versus softwood Kraft lignin [precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23543-23554	13	13
206	Towards a More Sustainable Lithium-Ion Battery Future: Recycling LIBs from Electric Vehicles. <i>Batteries and Supercaps</i> , 2020 , 3, 1125-1125	5.6	5
205	Ammonia Gas Sensor Response of a Vertical Zinc Oxide Nanorod-Gold Junction Diode at Room Temperature. <i>ACS Sensors</i> , 2020 , 5, 3568-3575	9.2	19
204	Hydrothermal Conversion of Spent Sugar Beets into High-Value Platform Molecules. <i>Molecules</i> , 2020 , 25,	4.8	5

203	A Diverse View of Science to Catalyse Change. <i>Angewandte Chemie</i> , 2020 , 132, 18462-18466	3.6	О
202	Sodium Storage Mechanism Investigations through Structural Changes in Hard Carbons. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9918-9927	6.1	21
201	A Diverse View of Science to Catalyse Change. Angewandte Chemie - International Edition, 2020, 59, 18.	3066.148	3120
200	A diverse view of science to catalyse change. <i>Croatica Chemica Acta</i> , 2020 , 93, 77-81	0.8	1
199	Porous carbon nanosheets from biological nucleobase precursor as efficient pH-independent oxygen reduction electrocatalyst. <i>Carbon</i> , 2020 , 156, 179-186	10.4	26
198	Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. <i>Chemical Science</i> , 2019 , 10, 2980-2988	9.4	60
197	Carbon-Based Metal-Free Catalysts for Energy Storage and Environmental Remediation. <i>Advanced Materials</i> , 2019 , 31, e1806128	24	118
196	Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors. <i>Green Chemistry</i> , 2019 , 21, 550-559	10	79
195	Se-modified polymeric carbon nitride nanosheets with improved photocatalytic activities. <i>Journal of Catalysis</i> , 2019 , 375, 104-112	7.3	31
194	Sodium-Ion Batteries: HardBoft Carbon Composite Anodes with Synergistic Sodium Storage Performance (Adv. Funct. Mater. 24/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970164	15.6	2
193	Photocarving nitrogen vacancies in a polymeric carbon nitride for metal-free oxygen synthesis. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117794	21.8	44
192	Homogenous Meets Heterogenous and Electro-Catalysis: Iron-Nitrogen Molecular Complexes within Carbon Materials for Catalytic Applications. <i>ChemCatChem</i> , 2019 , 11, 3602-3625	5.2	16
191	Enhancing Visible-Light Hydrogen Evolution Performance of Crystalline Carbon Nitride by Defect Engineering. <i>ChemSusChem</i> , 2019 , 12, 3257-3262	8.3	66
190	Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. <i>Nature Communications</i> , 2019 , 10, 1340	17.4	59
189	A review of rechargeable batteries for portable electronic devices. <i>Informal</i> d Materilly, 2019 , 1, 6-32	23.1	400
188	The Influence of Heteroatom Dopants Nitrogen, Boron, Sulfur, and Phosphorus on Carbon Electrocatalysts for the Oxygen Reduction Reaction. <i>ChemPlusChem</i> , 2019 , 84, 457-464	2.8	27
187	HardBoft Carbon Composite Anodes with Synergistic Sodium Storage Performance. <i>Advanced Functional Materials</i> , 2019 , 29, 1901072	15.6	125
186	High density graphenedarbon nanosphere films for capacitive energy storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6126-6133	13	22

(2018-2019)

185	Manipulating the Optical Properties of Carbon Dots by Fine-Tuning their Structural Features. <i>ChemSusChem</i> , 2019 , 12, 4432-4441	8.3	19
184	Green and sustainable zero-waste conversion of water hyacinth () into superior magnetic carbon composite adsorbents and supercapacitor electrodes <i>RSC Advances</i> , 2019 , 9, 24248-24258	3.7	23
183	Free radicals formation on thermally decomposed biomass. <i>Fuel</i> , 2019 , 255, 115802	7.1	12
182	Intercalation chemistry of graphite: alkali metal ions and beyond. <i>Chemical Society Reviews</i> , 2019 , 48, 4655-4687	58.5	275
181	All-Cellulose-Based Quasi-Solid-State Sodium-Ion Hybrid Capacitors Enabled by Structural Hierarchy. <i>Advanced Functional Materials</i> , 2019 , 29, 1903895	15.6	55
180	Charge/discharge and cycling performance of flexible carbon paper electrodes in a regenerative hydrogen/vanadium fuel cell. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 30093-30107	6.7	11
179	Regulating Pore Structure of Hierarchical Porous Waste Cork-Derived Hard Carbon Anode for Enhanced Na Storage Performance. <i>Advanced Energy Materials</i> , 2019 , 9, 1902852	21.8	102
178	Boosting the Oxygen Reduction Electrocatalytic Performance of Nonprecious Metal Nanocarbons via Triple Boundary Engineering Using Protic Ionic Liquids. <i>ACS Applied Materials & Diterfaces</i> , 2019 , 11, 11298-11305	9.5	26
177	Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27567-27575	13	39
176	Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. <i>ACS Omega</i> , 2019 , 4, 21658-21665	3.9	36
175	From Waste to Wealth: From Kraft Lignin to Free-standing Supercapacitors. <i>Carbon</i> , 2019 , 145, 470-480	10.4	87
174	Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. <i>Journal of Energy Chemistry</i> , 2019 , 29, 17-22	12	70
173	Freestanding Non-Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions. <i>ChemElectroChem</i> , 2018 , 5, 1786-1804	4.3	26
172	Preparation and properties of biomorphic potassium-based geopolymer (KGP)-biocarbon (CB) composite. <i>Ceramics International</i> , 2018 , 44, 12957-12964	5.1	7
171	Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. <i>Materials Horizons</i> , 2018 , 5, 423-428	14.4	37
170	Low-Cost Chitosan-Derived N-Doped Carbons Boost Electrocatalytic Activity of Multiwall Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2018 , 28, 1707284	15.6	55
169	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 772-785	5.8	39
168	Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Scientific Reports, 2018, 8, 6559	4.9	81

167	Graphene-reinforced silicon oxycarbide composites prepared by phase transfer. <i>Carbon</i> , 2018 , 139, 813-	-8234	11
166	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. <i>Electrochimica Acta</i> , 2018 , 284, 597-608	6.7	21
165	Biomass-Derived Nitrogen-Doped Carbon Aerogel Counter Electrodes for Dye Sensitized Solar Cells. <i>Materials</i> , 2018 , 11,	3.5	9
164	Integration of supercapacitors into printed circuit boards. <i>Journal of Energy Storage</i> , 2018 , 19, 28-34	7.8	11
163	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018 , 19, 337-347	7.8	30
162	High Performance N-Doped Carbon Electrodes Obtained via Hydrothermal Carbonization of Macroalgae for Supercapacitor Applications. <i>ChemElectroChem</i> , 2018 , 5, 2686-2693	4.3	67
161	Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost. <i>Applied Surface Science</i> , 2018 , 435, 543-551	6.7	14
160	Biomass-derived electrodes for flexible supercapacitors. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2018 , 9, 18-24	7.9	46
159	Photoelectrochemical Imaging Using Carbon Dots (CDs) Derived from Chitosan. <i>Proceedings (mdpi)</i> , 2018 , 2, 778	0.3	2
158	A Review of Functional Binders in LithiumBulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107	21.8	203
158 157	A Review of Functional Binders in Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802107 Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18374-18384	21.8 4.8	203
	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen		
157	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18374-18384 A Review of Advanced Energy Materials for Magnesium Bulfur Batteries. <i>Energy and Environmental</i>	4.8	39
157 156	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18374-18384 A Review of Advanced Energy Materials for MagnesiumBulfur Batteries. <i>Energy and Environmental Materials</i> , 2018 , 1, 100-112	4.8	39 74
157 156 155	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18374-18384 A Review of Advanced Energy Materials for MagnesiumBulfur Batteries. <i>Energy and Environmental Materials</i> , 2018 , 1, 100-112 Hydrothermal Carbon Materials for the Oxygen Reduction Reaction 2018 , 369-401	4.8	39 74 2
157 156 155	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18374-18384 A Review of Advanced Energy Materials for Magnesium Sulfur Batteries. <i>Energy and Environmental Materials</i> , 2018 , 1, 100-112 Hydrothermal Carbon Materials for the Oxygen Reduction Reaction 2018 , 369-401 Carbon-Nanodot Solar Cells from Renewable Precursors. <i>ChemSusChem</i> , 2017 , 10, 1004-1013	4.8	39 74 2 42
157 156 155 154	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18374-18384 A Review of Advanced Energy Materials for MagnesiumBulfur Batteries. <i>Energy and Environmental Materials</i> , 2018 , 1, 100-112 Hydrothermal Carbon Materials for the Oxygen Reduction Reaction 2018 , 369-401 Carbon-Nanodot Solar Cells from Renewable Precursors. <i>ChemSusChem</i> , 2017 , 10, 1004-1013 Nanoporous Materials for the Onboard Storage of Natural Gas. <i>Chemical Reviews</i> , 2017 , 117, 1796-1825 Sustainable metal-free carbogels as oxygen reduction electrocatalysts. <i>Journal of Materials</i>	4.8 13 8.3 6.68.1	39 74 2 42 170

(2016-2017)

149	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. <i>Energy Storage Materials</i> , 2017 , 7, 130-151	19.4	351
148	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1077-1093	12	220
147	Feedstocks and analysis: general discussion. <i>Faraday Discussions</i> , 2017 , 202, 497-519	3.6	2
146	Bio-based materials: general discussion. <i>Faraday Discussions</i> , 2017 , 202, 121-139	3.6	3
145	Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells. Journal of Power Sources, 2017 , 372, 82-90	8.9	42
144	Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. <i>Materials Horizons</i> , 2017 , 4, 895-899	14.4	45
143	Connecting carbon porosity with dispersibility and friability. <i>Carbon</i> , 2017 , 112, 117-129	10.4	6
142	S, N-Co-Doped Graphene-Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. <i>Advanced Science</i> , 2017 , 4, 1600214	13.6	169
141	Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. <i>Carbon</i> , 2016 , 96, 622-630	10.4	73
140	Oxygen Electrocatalysis: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis (Adv. Mater. 32/2016). <i>Advanced Materials</i> , 2016 , 28, 7030-7030	24	10
139	Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12658-12666	13	76
138	Understanding the Hydrophilicity and Water Adsorption Behavior of Nanoporous Nitrogen-Doped Carbons. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18167-18179	3.8	38
137	Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithiumBulphur batteries. <i>Green Chemistry</i> , 2016 , 18, 5169-5179	10	117
136	Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. <i>ChemSusChem</i> , 2016 , 9, 562-82	8.3	408
135	The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2581-2589	13	158
134	Towards effective small scale microbial fuel cells for energy generation from urine. <i>Electrochimica Acta</i> , 2016 , 192, 89-98	6.7	99
133	Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation. <i>Microporous and Mesoporous Materials</i> , 2016 , 226, 125-132	5.3	53
132	Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2508-2516	8.3	17

131	Bio-inspired carbon electro-catalysts for the oxygen reduction reaction. <i>Journal of Energy Chemistry</i> , 2016 , 25, 228-235	12	19
130	Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst. <i>ACS Catalysis</i> , 2016 , 6, 2332-2340	13.1	40
129	Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. <i>Journal of Energy Chemistry</i> , 2016 , 25, 566-570	12	38
128	Meso- and microporous soft templated hydrothermal carbons for dye removal from water. <i>Green Chemistry</i> , 2016 , 18, 1137-1146	10	97
127	Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600659	21.8	488
126	Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2016 , 28, 6845-51	24	522
125	Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. <i>ACS Nano</i> , 2016 , 10, 5922-32	16.7	345
124	Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. <i>Carbon</i> , 2016 , 106, 179-187	10.4	149
123	In Situ Synthesis of Fluorescent Carbon Dots/Polyelectrolyte Nanocomposite Microcapsules with Reduced Permeability and Ultrasound Sensitivity. <i>ACS Nano</i> , 2016 , 10, 9608-9615	16.7	53
122	Electrochemical behaviour of activated carbons obtained via hydrothermal carbonization. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15558-15567	13	33
121	Structural and Morphological Changes in Kraft Lignin during Hydrothermal Carbonization. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2737-2745	8.3	83
120	Hydrothermal Carbonization of Digestate in the Presence of Zeolite: Process Efficiency and Composite Properties. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2967-2974	8.3	42
119	Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. <i>ACS Applied Materials & English Sensor</i> , 10, 25875-83	9.5	97
118	Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22310-22321	3.8	78
117	Sustainable carbon materials. <i>Chemical Society Reviews</i> , 2015 , 44, 250-90	58.5	826
116	Aus Biomasse hergestellte Kohlenstoff-Quantenpunkt-Sensibilisatoren filnanostrukturierte Festkiper-Solarzellen. <i>Angewandte Chemie</i> , 2015 , 127, 4544-4550	3.6	11
115	Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4463-8	16.4	259
114	Hydrothermal Carbonization of Biomass 2015, 325-352		15

113	Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 17549	3.7	105
112	Always look on the "light" side of life: sustainable carbon aerogels. <i>ChemSusChem</i> , 2014 , 7, 670-89	8.3	128
111	Biosourced nitrogen-doped microcellular carbon monoliths. <i>ChemSusChem</i> , 2014 , 7, 397-401	8.3	10
110	Charging and Discharging Behavior of Solvothermal LiFePO4 Cathode Material Investigated by Combined EELS/NEXAFS Study. <i>Chemistry of Materials</i> , 2014 , 26, 1040-1047	9.6	18
109	Characterization of biomass and its derived char using 13C-solid state nuclear magnetic resonance. <i>Green Chemistry</i> , 2014 , 16, 4839-4869	10	64
108	Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal. <i>RSC Advances</i> , 2014 , 4, 37423-37430	3.7	26
107	Supercapacitive Behavior of Two Glucose-Derived Microporous Carbons: Direct Pyrolysis versus Hydrothermal Carbonization. <i>ChemElectroChem</i> , 2014 , 1, 2138-2145	4.3	50
106	Hydrothermal Nanocarbons 2014 , 351-406		
105	Carbohydrate-Derived Nanoarchitectures: On a Synergistic Effect Toward an Improved Performance in LithiumBulfur Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 126-129	8.3	27
104	Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 929-936	11.3	75
103	Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. Journal of Power Sources, 2014 , 267, 26-32	8.9	131
102	7. Sustainable carbon hybrid materials made by hydrothermal carbonization and their use in energy applications 2014 ,		2
101	Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts. <i>Green Chemistry</i> , 2013 , 15, 2514	10	123
100	Porous Biomass-Derived Carbons: Activated Carbons 2013 , 75-100		6
99	Hydrothermal conversion of biomass to fuels and energetic materials. <i>Current Opinion in Chemical Biology</i> , 2013 , 17, 515-21	9.7	325
98	Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. <i>Carbon</i> , 2013 , 62, 346-355	10.4	165
97	Hydrothermal synthesis of highly porous carbon monoliths from carbohydrates and phloroglucinol. <i>RSC Advances</i> , 2013 , 3, 17088	3.7	35
96	Hydrothermal nanocasting: Synthesis of hierarchically porous carbon monoliths and their application in lithiumBulfur batteries. <i>Carbon</i> , 2013 , 61, 245-253	10.4	115

1

95 Porous Hydrothermal Carbons **2013**, 37-73

94	Green Carbon 2013 , 1-36		
93	Characterization of Hydrothermal Carbonization Materials 2013, 151-211		3
92	Chemical Modification of Hydrothermal Carbon Materials 2013 , 125-149		1
91	Hydrothermally Synthesized Carbonaceous Nanocomposites 2013 , 101-124		
90	Applications of Hydrothermal Carbon in Modern Nanotechnology 2013 , 213-294		3
89	Environmental Applications of Hydrothermal Carbonization Technology: Biochar Production, Carbon Sequestration, and Waste Conversion 2013 , 295-340		9
88	Scale-Up in Hydrothermal Carbonization 2013 , 341-353		3
87	Facile polymer functionalization of hydrothermal-carbonization-derived carbons. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1080-4	4.8	9
86	Hydrothermal synthesis of SnO2 and SnO2@C nanorods and their application as anode materials in lithium-ion batteries. <i>RSC Advances</i> , 2013 , 3, 17281	3.7	22
85	Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. <i>Microporous and Mesoporous Materials</i> , 2013 , 165, 127-133	5.3	162
84	Direct methane oxidation over Pt-modified nitrogen-doped carbons. <i>Chemical Communications</i> , 2013 , 49, 240-2	5.8	65
83	Emulsion-templated macroporous carbons synthesized by hydrothermal carbonization and their application for the enzymatic oxidation of glucose. <i>ChemSusChem</i> , 2013 , 6, 701-10	8.3	48
82	Rice husk-derived carbon anodes for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 526	59 <u>1</u> 3	230
81	Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. <i>RSC Advances</i> , 2013 , 3, 9904	3.7	82
80	Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 6080-7	3.6	156
79	Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. <i>ChemSusChem</i> , 2013 , 6, 374-82	8.3	138
78	Flexible Coral-like Carbon Nanoarchitectures via a Dual Block Copolymer[latex Templating Approach. <i>Chemistry of Materials</i> , 2013 , 25, 4781-4790	9.6	52

77 Green Carbon Nanomaterials **2013**, 7-58

76	Synthesis of Microspherical LiFePOECarbon Composites for Lithium-Ion Batteries. <i>Nanomaterials</i> , 2013 , 3, 443-452	5.4	19
75	Carbohydrate-derived hydrothermal carbons: a thorough characterization study. <i>Langmuir</i> , 2012 , 28, 12373-83	4	212
74	Carbon-based ionogels: tuning the properties of the ionic liquid via carbon-ionic liquid interaction. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5992-7	3.6	19
73	Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. <i>Energy and Environmental Science</i> , 2012 , 5, 6796	35.4	631
72	High-performance CO2 sorbents from algae. <i>RSC Advances</i> , 2012 , 2, 12792	3.7	194
71	Hydrothermal Carbons: Synthesis, Characterization, and Applications 2012 , 351-399		10
70	A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. <i>Green Chemistry</i> , 2012 , 14, 741	10	142
69	Synthesis of mesoporous carbon/iron carbide hybrids with unusually high surface areas from the ionic liquid precursor [Bmim][FeCl4]. <i>CrystEngComm</i> , 2012 , 14, 4946	3.3	19
68	Thermoresponsive polymers in liquid chromatography. <i>Analytical Methods</i> , 2012 , 4, 34-43	3.2	42
67	Nitrogen-doped Hydrothermal Carbons. <i>Green</i> , 2012 , 2, 25-40		14
66	A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. <i>Green Chemistry</i> , 2012 , 14, 1515	10	494
65	An improved grafting technique for producing imprinted thin film composite beads. <i>Polymer Chemistry</i> , 2012 , 3, 1033	4.9	37
64	Borax-Mediated Formation of Carbon Aerogels from Glucose. <i>Advanced Functional Materials</i> , 2012 , 22, 3254-3260	15.6	136
63	Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 873-877	21.8	915
62	Hollow carbon nanospheres with a high rate capability for lithium-based batteries. <i>ChemSusChem</i> , 2012 , 5, 400-3	8.3	190
61	Renewable nitrogen-doped hydrothermal carbons derived from microalgae. <i>ChemSusChem</i> , 2012 , 5, 18	3 8.4 0	108
60	A sustainable synthesis of nitrogen-doped carbon aerogels. <i>Green Chemistry</i> , 2011 , 13, 2428	10	172

59	Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. <i>Biofuels</i> , 2011 , 2, 71-106	2	1013
58	Ordered Carbohydrate-Derived Porous Carbons. <i>Chemistry of Materials</i> , 2011 , 23, 4882-4885	9.6	117
57	Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. <i>Green Chemistry</i> , 2011 , 13, 3273	10	483
56	Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. <i>Langmuir</i> , 2011 , 27, 14460-71	4	209
55	LiFePO4 mesocrystals for lithium-ion batteries. Small, 2011, 7, 1127-35	11	78
54	Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7434		106
53	Structural Insights on Nitrogen-Containing Hydrothermal Carbon Using Solid-State Magic Angle Spinning 13C and 15N Nuclear Magnetic Resonance. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8976-89	9 82 8	85
52	Functional hollow carbon nanospheres by latex templating. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17360-3	16.4	235
51	Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. <i>Applied Soil Ecology</i> , 2010 , 45, 238-242	5	231
50	Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. <i>Chemical Society Reviews</i> , 2010 , 39, 103-16	58.5	857
49	Template Synthesis of Carbonaceous Tubular Nanostructures with Tunable Surface Properties. <i>Chemistry of Materials</i> , 2010 , 22, 6590-6597	9.6	67
48	Coal from carbohydrates: The Thimie doucelbf carbon. <i>Comptes Rendus Chimie</i> , 2010 , 13, 167-173	2.7	35
47	One-step hydrothermal synthesis of nitrogen-doped nanocarbons: albumine directing the carbonization of glucose. <i>ChemSusChem</i> , 2010 , 3, 246-53	8.3	107
46	Porous carbohydrate-based materials via hard templating. <i>ChemSusChem</i> , 2010 , 3, 188-94	8.3	72
45	Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. <i>ChemSusChem</i> , 2010 , 3, 840-5	8.3	158
44	Engineering carbon materials from the hydrothermal carbonization process of biomass. <i>Advanced Materials</i> , 2010 , 22, 813-28	24	1282
43	One-step solvothermal synthesis of a carbon@TiO(2) dyade structure effectively promoting visible-light photocatalysis. <i>Advanced Materials</i> , 2010 , 22, 3317-21	24	411
42	Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. <i>Advanced Materials</i> , 2010 , 22, 5202-6	24	789

(2008-2010)

41	Methane conversion on PtRu nanoparticles alloy supported on hydrothermal carbon. <i>Applied Catalysis A: General</i> , 2010 , 386, 140-146	5.1	23
40	Sustainable nitrogen-doped carbon latexes with high electrical and thermal conductivity. <i>Polymer</i> , 2010 , 51, 4540-4546	3.9	46
39	Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. <i>Applied Catalysis A: General</i> , 2010 , 390, 175-182	5.1	99
38	Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis. <i>Catalysis Today</i> , 2010 , 150, 115-118	5.3	91
37	Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. <i>Carbon</i> , 2010 , 48, 3778-	371874	332
36	Proteins Induced Formation of Hydrothermal Nitrogen Doped Carbons. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1219, 4051		
35	Porous polymers: enabling solutions for energy applications. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 221-36	4.8	168
34	Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid. <i>Chemistry of Materials</i> , 2009 , 21, 484-490	9.6	428
33	Naturally inspired nitrogen doped porous carbon. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8645		179
32	Thermo-responsive columns for HPLC: The effect of chromatographic support and polymer molecular weight on the performance of the columns. <i>Analytical Methods</i> , 2009 , 1, 52-58	3.2	8
31	Structural Characterization of Hydrothermal Carbon Spheres by Advanced Solid-State MAS 13C NMR Investigations. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9644-9654	3.8	333
30	PEGylated Chromatography: Efficient Bioseparation on Silica Monoliths Grafted with Smart Biocompatible Polymers. <i>ACS Applied Materials & Discompatible Polymers</i> . <i>ACS Applied Materials & Discompatible Polymers</i> .	9.5	41
29	Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. <i>Chemical Communications</i> , 2008 , 999-1001	5.8	202
28	Facile One-Pot Synthesis of Mesoporous SnO2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties. <i>Chemistry of Materials</i> , 2008 , 20, 1227-1229	9.6	401
27	Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. <i>Chemical Communications</i> , 2008 , 3759-61	5.8	124
26	Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. <i>Green Chemistry</i> , 2008 , 10, 1204	10	609
25	Thin thermo-responsive polymer films onto the pore system of chromatographic beads via reversible addition f ragmentation chain transfer polymerization. <i>New Journal of Chemistry</i> , 2008 , 32, 1409	3.6	28
24	Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1645-9	16.4	855

23	Ein Si@SiOx/C-Nanokomposit als Anodenmaterial flLithiumionenbatterien mit hoher Speicherleistung. <i>Angewandte Chemie</i> , 2008 , 120, 1669-1673	3.6	65
22	Thermo-responsive monolithic materials. <i>Journal of Chromatography A</i> , 2008 , 1203, 160-7	4.5	28
21	Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?. <i>New Journal of Chemistry</i> , 2007 , 31, 787	3.6	361
20	Replication and Coating of Silica Templates by Hydrothermal Carbonization. <i>Advanced Functional Materials</i> , 2007 , 17, 1010-1018	15.6	220
19	Chromatographic comparison of bupivacaine imprinted polymers prepared in crushed monolith, microsphere, silica-based composite and capillary monolith formats. <i>Journal of Chromatography A</i> , 2007 , 1160, 215-26	4.5	56
18	A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. <i>Chemistry of Materials</i> , 2007 , 19, 4205-4212	9.6	391
17	Aminated hydrophilic ordered mesoporous carbons. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3412		145
16	Thin Molecularly Imprinted Polymer Films via Reversible Addition Bragmentation Chain Transfer Polymerization. <i>Chemistry of Materials</i> , 2006 , 18, 1773-1779	9.6	182
15	A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach. <i>Chemistry of Materials</i> , 2006 , 18, 3808-3812	9.6	586
14	Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. <i>Analytica Chimica Acta</i> , 2005 , 542, 38-46	6.6	85
13	Peptide recognition via hierarchical imprinting. Analytical and Bioanalytical Chemistry, 2004, 378, 1913-	214.4	53
12	Hierarchical Imprinting Using Crude Solid Phase Peptide Synthesis Products as Templates. <i>Chemistry of Materials</i> , 2003 , 15, 822-824	9.6	73
11	Hierarchically Imprinted Stationary Phases: Mesoporous Polymer Beads Containing Surface-Confined Binding Sites for Adenine. <i>Chemistry of Materials</i> , 2002 , 14, 21-23	9.6	87
10	Ice-Templated, Sustainable Carbon Aerogels with Hierarchically Tailored Channels for Sodium- and Potassium-Ion Batteries. <i>Advanced Functional Materials</i> ,2110862	15.6	12
9	Elucidation of the Solid Electrolyte Interphase Formation Mechanism in Micro-Mesoporous Hard-Carbon Anodes. <i>Advanced Materials Interfaces</i> ,2101267	4.6	6
8	Strategies for High Energy Density Dual-Ion Batteries Using Carbon-Based Cathodes. <i>Advanced Energy and Sustainability Research</i> ,2100074	1.6	6
7	Progress and Perspectives in Photo- and Electrochemical-Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. <i>Advanced Energy Materials</i> ,2101180	21.8	40
6	Biomass derived carbon materials: Synthesis and application towards CO2 and H2S adsorption. <i>Nano Select</i> ,	3.1	2

LIST OF PUBLICATIONS

5	Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy and Environmental Science,	35.4	19
4	Iron, Nitrogen Co-Doped Carbon Spheres as Low Cost, Scalable Electrocatalysts for the Oxygen Reduction Reaction. <i>Advanced Functional Materials</i> ,2102974	15.6	12
3	Thermal treatment versus hydrothermal carbonization: How to synthesize nitrogen-enriched carbon materials for energy storage applications?. <i>International Journal of Energy Research</i> ,	4.5	2
2	The Role of Hydrothermal Carbonization in Sustainable Sodium-Ion Battery Anodes. <i>Advanced Energy Materials</i> ,2200208	21.8	5
1	A Comparative Techno-Economic and Lifecycle Analysis of Biomass-Derived Anode Materials for Lithium- and Sodium-Ion Batteries. <i>Advanced Sustainable Systems</i> , 2200047	5.9	О