Kyoungmin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Insulin Resistance and the Development of Cardiovascular Diseases in Diabetes: The 2015 Edwin Bierman Award Lecture. Diabetes, 2016, 65, 1462-1471.	0.6	173
2	Protective Effects of GLP-1 on Glomerular Endothelium and Its Inhibition by PKCÎ ² Activation in Diabetes. Diabetes, 2012, 61, 2967-2979.	0.6	152
3	Induction of Vascular Insulin Resistance and Endothelin-1 Expression and Acceleration of Atherosclerosis by the Overexpression of Protein Kinase C-β Isoform in the Endothelium. Circulation Research, 2013, 113, 418-427.	4.5	75
4	Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy. Diabetes Care, 2019, 42, 1263-1273.	8.6	72
5	Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Science Translational Medicine, 2019, 11, .	12.4	62
6	PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. Journal of Clinical Investigation, 2016, 126, 837-853.	8.2	56
7	Serine Phosphorylation Sites on IRS2 Activated by Angiotensin II and Protein Kinase C To Induce Selective Insulin Resistance in Endothelial Cells. Molecular and Cellular Biology, 2013, 33, 3227-3241.	2.3	54
8	Inhibition of Insulin Signaling in Endothelial Cells by Protein Kinase C-induced Phosphorylation of p85 Subunit of Phosphatidylinositol 3-Kinase (PI3K). Journal of Biological Chemistry, 2012, 287, 4518-4530.	3.4	46
9	Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insight, 2016, 1, .	5.0	46
10	Exogenous Insulin Infusion Can Decrease Atherosclerosis in Diabetic Rodents by Improving Lipids, Inflammation, and Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 92-101.	2.4	42
11	Regulation of Macrophage Apoptosis and Atherosclerosis by Lipid-Induced PKCδ Isoform Activation. Circulation Research, 2017, 121, 1153-1167.	4.5	33
12	Homozygous receptors for insulin and not IGF-1 accelerate intimal hyperplasia in insulin resistance and diabetes. Nature Communications, 2019, 10, 4427.	12.8	30
13	Insulin's actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Molecular Metabolism, 2021, 52, 101236.	6.5	30
14	Overexpressing IRS1 in Endothelial Cells Enhances Angioblast Differentiation and Wound Healing in Diabetes and Insulin Resistance. Diabetes, 2016, 65, 2760-2771.	0.6	29
15	Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney International, 2017, 91, 642-657.	5.2	28
16	Relation of Body Circumferences to Cardiometabolic Disease in Overweight-Obese Subjects. American Journal of Cardiology, 2016, 118, 822-827.	1.6	20
17	Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCl Insight, 2022, 7, .	5.0	20
18	Endothelial Cells Induced Progenitors Into Brown Fat to Reduce Atherosclerosis. Circulation Research, 2022, 131, 168-183.	4.5	14

#	Article	IF	CITATIONS
19	High density lipoprotein modulates osteocalcin expression in circulating monocytes: a potential protective mechanism for cardiovascular disease in type 1 diabetes. Cardiovascular Diabetology, 2017, 16, 116.	6.8	13
20	Association of bone biomarkers with advanced atherosclerotic disease in people with overweight/obesity. Endocrine, 2021, 73, 339-346.	2.3	8
21	Pathogenesis of Microvascular Complications. Endocrinology, 2018, , 1-42.	0.1	0
22	Pathogenesis of Microvascular Complications. Endocrinology, 2018, , 161-201.	0.1	0
23	Pathogenesis of Microvascular Complications. Endocrinology, 2019, , 1-41.	0.1	0
24	Pathogenesis of Microvascular Complications. Endocrinology, 2020, , 161-201.	0.1	0