Earl T Barr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550214/publications.pdf

Version: 2024-02-01

840585 752573 3,439 47 11 20 citations h-index g-index papers 47 47 47 1615 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Aide-mémoire: Improving a Project's Collective Memory via Pull Request–Issue Links. ACM Transactions on Software Engineering and Methodology, 2023, 32, 1-36.	4.8	0
2	The Assessor's Dilemma: Improving Bug Repair via Empirical Game Theory. IEEE Transactions on Software Engineering, 2021, 47, 2143-2161.	4.3	7
3	Today Was a Good Day: The Daily Life of Software Developers. IEEE Transactions on Software Engineering, 2021, 47, 863-880.	4.3	39
4	Getting Ahead of the Arms Race: Hothousing the Coevolution of VirusTotal with a Packer. Entropy, 2021, 23, 395.	1,1	11
5	Artefact Relation Graphs for Unit Test Reuse Recommendation. , 2021, , .		4
6	Trident: Controlling Side Effects in Automated Program Repair. IEEE Transactions on Software Engineering, 2021, , 1-1.	4.3	2
7	Game-theoretic analysis of development practices: Challenges and opportunities. Journal of Systems and Software, 2020, 159, 110424.	3.3	13
8	Detecting Malware with Information Complexity. Entropy, 2020, 22, 575.	1,1	6
9	POSIT., 2020,,.		5
10	A Survey of Machine Learning for Big Code and Naturalness. ACM Computing Surveys, 2019, 51, 1-37.	16.1	383
10	A Survey of Machine Learning for Big Code and Naturalness. ACM Computing Surveys, 2019, 51, 1-37. Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169.	4.3	19
	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software		
11	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169. The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems With	4.3	19
11 12	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169. The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems With Applications, 2019, 118, 246-260.	4.3	19 27
11 12 13	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169. The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems With Applications, 2019, 118, 246-260. Deep learning type inference., 2018,,.	4.3	19 27 100
11 12 13	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169. The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems With Applications, 2019, 118, 246-260. Deep learning type inference., 2018,,	4.3	19 27 100 17
11 12 13 14	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169. The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems With Applications, 2019, 118, 246-260. Deep learning type inference., 2018,, RefiNym: using names to refine types., 2018,,	4.3	19 27 100 17

#	Article	IF	Citations
19	To Type or Not to Type: Quantifying Detectable Bugs in JavaScript. , 2017, , .		50
20	Optimising Darwinian Data Structures on Google Guava. Lecture Notes in Computer Science, 2017, , 161-167.	1.0	6
21	Time-travel debugging for JavaScript/Node.js. , 2016, , .		19
22	Casper: Automatic tracking of null dereferences to inception with causality traces. Journal of Systems and Software, 2016, 122, 52-62.	3.3	4
23	On the naturalness of software. Communications of the ACM, 2016, 59, 122-131.	3.3	158
24	Suggesting accurate method and class names. , 2015, , .		247
25	Is the cure worse than the disease? overfitting in automated program repair. , 2015, , .		203
26	The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software Engineering, 2015, 41, 507-525.	4.3	608
27	Automated software transplantation. , 2015, , .		90
28	Automated Transplantation of Call Graph and Layout Features into Kate. Lecture Notes in Computer Science, 2015, , 262-268.	1.0	17
29	The plastic surgery hypothesis. , 2014, , .		136
30	Tardis., 2014,,.		16
31	Learning natural coding conventions. , 2014, , .		250
32	Capturing and Exploiting IDE Interactions. , 2014, , .		6
33	Comparing static bug finders and statistical prediction. , 2014, , .		76
34	Uncertainty, risk, and information value in software requirements and architecture. , 2014, , .		76
35	Tardis. ACM SIGPLAN Notices, 2014, 49, 67-82.	0.2	7
36	What effect does Distributed Version Control have on OSS project organization?., 2013,,.		3

#	Article	IF	CITATIONS
37	Collecting a heap of shapes. , 2013, , .		4
38	Automatic detection of floating-point exceptions. , 2013, , .		72
39	Automatic detection of floating-point exceptions. ACM SIGPLAN Notices, 2013, 48, 549-560.	0.2	19
40	Reusing debugging knowledge via trace-based bug search. , 2012, , .		14
41	Liberating the programmer with prorogued programming. , 2012, , .		6
42	Reusing debugging knowledge via trace-based bug search. ACM SIGPLAN Notices, 2012, 47, 927-942.	0.2	1
43	On the naturalness of software. , 2012, , .		345
44	Cohesive and Isolated Development with Branches. Lecture Notes in Computer Science, 2012, , 316-331.	1.0	48
45	BQL., 2011,,.		3
46	Has the bug really been fixed?. , 2010, , .		63
47	The promises and perils of mining git. , 2009, , .		220