Congcong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549965/publications.pdf

Version: 2024-02-01

201674 223800 3,666 45 27 citations h-index papers

46 g-index 46 46 46 5391 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 2018, 9, 3239.	12.8	1,017
2	Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Letters, 2016, 1, 1014-1020.	17.4	367
3	Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 4693-4700.	4.6	335
4	Quasi-Two-Dimensional Halide Perovskite Single Crystal Photodetector. ACS Nano, 2018, 12, 4919-4929.	14.6	252
5	Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Letters, 2019, 19, 3313-3320.	9.1	181
6	Isothermally crystallized perovskites at room-temperature. Energy and Environmental Science, 2020, 13, 3412-3422.	30.8	153
7	Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J–V hysteresis. Nano Energy, 2015, 17, 269-278.	16.0	148
8	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	32.8	95
9	28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 2021, 84, 105934.	16.0	93
10	The Controlling Mechanism for Potential Loss in CH ₃ NH ₃ PbBr ₃ Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 424-430.	17.4	77
11	Distinct conducting layer edge states in two-dimensional (2D) halide perovskite. Science Advances, 2019, 5, eaau3241.	10.3	62
12	Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for Lowâ€Temperature Perovskite Solar Cells. Small Methods, 2019, 3, 1800521.	8.6	58
13	Highly‣table Organo‣ead Halide Perovskites Synthesized Through Green Selfâ€Assembly Process. Solar Rrl, 2018, 2, 1800052.	5.8	56
14	Volatile solution: the way toward scalable fabrication of perovskite solar cells?. Matter, 2021, 4, 775-793.	10.0	53
15	All electrospray printed perovskite solar cells. Nano Energy, 2018, 53, 440-448.	16.0	46
16	A Nonionic and Low-Entropic MA(MMA)nPbI3-lnk for Fast Crystallization of Perovskite Thin Films. Joule, 2020, 4, 615-630.	24.0	46
17	Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Letters, 2019, 4, 2646-2655.	17.4	45
18	Selfâ€Powered Red/UV Narrowband Photodetector by Unbalanced Charge Carrier Transport Strategy. Advanced Functional Materials, 2021, 31, 2007016.	14.9	44

#	Article	IF	Citations
19	Mono-crystalline Perovskite Photovoltaics toward Ultrahigh Efficiency?. Joule, 2019, 3, 311-316.	24.0	43
20	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804419.	14.9	42
21	Fabrication of Leadâ€Free (CH ₃ NH ₃) ₃ Bi ₂ I ₉ Perovskite Photovoltaics in Ethanol Solvent. ChemSusChem, 2017, 10, 3994-3998.	6.8	36
22	"One-key-reset―recycling of whole perovskite solar cell. Matter, 2021, 4, 2522-2541.	10.0	31
23	Cost-effective sustainable-engineering of CH3NH3PbI3 perovskite solar cells through slicing and restacking of 2D layers. Nano Energy, 2017, 36, 295-302.	16.0	30
24	Ultrahigh Durability Perovskite Solar Cells. Nano Letters, 2019, 19, 1251-1259.	9.1	30
25	Artemisinin (ART)-Induced "perovskite/perovskite―bilayer structured photovoltaics. Nano Energy, 2020, 78, 105133.	16.0	30
26	Two-dimensional hybrid organic–inorganic perovskites as emergent ferroelectric materials. Journal of Applied Physics, 2020, 128, .	2. 5	30
27	Crystallization of HC(NH ₂) ₂ Pbl ₃ Black Polymorph by Solvent Intercalation for Low Temperature Solution Processing of Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 26710-26719.	3.1	29
28	Strain-relaxed tetragonal MAPbI3 results in efficient mesoporous solar cells. Nano Energy, 2021, 83, 105788.	16.0	29
29	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. Journal of Materials Chemistry A, 2019, 7, 24661-24690.	10.3	27
30	All Electrospray Printing of Carbonâ€Based Costâ€Effective Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2006803.	14.9	26
31	Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability. Nano Energy, 2022, 94, 106936.	16.0	25
32	î²-Alanine-Anchored SnO ₂ Inducing Facet Orientation for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Solar 13, 57163-57170.	8.0	18
33	Enhanced dielectric behavior in nanocomposites of polyurethane bonded with copper phthalocyanine oligomers. Polymer Journal, 2014, 46, 285-292.	2.7	15
34	Nature of terrace edge states (TES) in lower-dimensional halide perovskite. Journal of Materials Chemistry A, 2020, 8, 7659-7670.	10.3	14
35	P(VDF–TrFE–CFE)-based percolative composites exhibiting significantly enhanced dielectric properties. Polymer Bulletin, 2013, 70, 1327-1335.	3.3	10
36	Ionic Liquid Additiveâ€Assisted Highly Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100648.	5. 8	10

#	Article	IF	CITATIONS
37	Polydopamine-Modified Electrospun Polyvinylidene Fluoride Nanofiber Based Flexible Polymer Gel Electrolyte for Highly Stable Dye-Sensitized Solar Cells. ACS Omega, 2021, 6, 28663-28670.	3.5	10
38	A polyurethane-based elastomeric nanocomposite with a high dielectric constant. Polymer Bulletin, 2014, 71, 1263-1276.	3.3	9
39	Unraveling the irreversible transformation by nucleophilic substitution: A hint for fully transparent perovskite. EcoMat, 2022, 4, .	11.9	9
40	Paradigm ink with a temporally controllable processing-window for perovskite modules. Journal of Materials Chemistry A, 2022, 10, 14989-14999.	10.3	8
41	High-dielectric constant percolative composite of P(VDF-TrFE) and modified multi-walled carbon-nanotubes. Polymer Bulletin, 2012, 68, 2285-2297.	3.3	7
42	Allâ€organic nanocomposites of functionalized polyurethane with enhanced dielectric and electroactive strain behavior. Polymers for Advanced Technologies, 2014, 25, 657-664.	3.2	7
43	Significantly enhanced dielectric response in composite of P(VDF-TrFE) and modified multi-walled carbon-nanotubes. E-Polymers, 2012, 12, .	3.0	5
44	Interface Effects in Triazineâ€Based gâ€C ₃ N ₄ /MAPbI ₃ Van der Waals Heterojunctions: A Firstâ€Principles Study. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	3
45	Photovoltaic Devices: Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970078.	14.9	2