Aravind L Iyer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7549941/aravind-l-iyer-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

380 266 72,278 123 h-index g-index citations papers 80,556 400 10.9 7.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
380	Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria <i>Nature</i> , 2022 ,	50.4	4
379	GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products <i>BMC Biology</i> , 2022 , 20, 68	7.3	О
378	GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ER glycosylation and stability to cancer. <i>Science Advances</i> , 2021 , 7,	14.3	4
377	Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. <i>ELife</i> , 2021 , 10,	8.9	1
376	Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. <i>ELife</i> , 2021 , 10,	8.9	2
375	Unification and extensive diversification of M/Orf3-related ion channel proteins in coronaviruses and other nidoviruses. <i>Virus Evolution</i> , 2021 , 7, veab014	3.7	10
374	Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. <i>Viruses</i> , 2021 , 13,	6.2	14
373	: Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. <i>Frontiers in Microbiology</i> , 2021 , 12, 697669	5.7	6
372	Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength. <i>Development (Cambridge)</i> , 2021 , 148,	6.6	3
371	Evolutionarily ancient BAH-PHD protein mediates Polycomb silencing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 11614-11623	11.5	13
370	Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis of SARS-CoV-2-Related Viruses. <i>MBio</i> , 2020 , 11,	7.8	44
369	Antigen Discovery, Bioinformatics and Biological Characterization of Novel Immunodominant Babesia microti Antigens. <i>Scientific Reports</i> , 2020 , 10, 9598	4.9	5
368	Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. <i>Frontiers in Genetics</i> , 2020 , 11, 34	4.5	5
367	TET methylcytosine oxidases: new insights from a decade of research. <i>Journal of Biosciences</i> , 2020 , 45, 1	2.3	26
366	TET methylcytosine oxidases: new insights from a decade of research. <i>Journal of Biosciences</i> , 2020 , 45,	2.3	16
365	Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. <i>ELife</i> , 2020 , 9,	8.9	11
364	An RNA Repair Operon Regulated by Damaged tRNAs. <i>Cell Reports</i> , 2020 , 33, 108527	10.6	7

(2018-2020)

363	Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis Mechanisms of SARS-Related Coronaviruses 2020 ,		7
362	HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. <i>Molecular Cell</i> , 2020 , 77, 384-394.e4	17.6	17
361	NONU-1 Encodes a Conserved Endonuclease Required for mRNA Translation Surveillance. <i>Cell Reports</i> , 2020 , 30, 4321-4331.e4	10.6	21
360	Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. <i>Journal of Bacteriology</i> , 2020 , 202,	3.5	16
359	A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development. <i>Developmental Cell</i> , 2020 , 55, 432-449.e12	10.2	12
358	Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. <i>MBio</i> , 2020 , 11,	7.8	3
357	Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. <i>Nucleic Acids Research</i> , 2020 , 48, 10045-10075	20.1	9
356	Unusual Activity of a TET/JBP Family Enzyme. <i>Biochemistry</i> , 2019 , 58, 3627-3629	3.2	3
355	The catalytic core of DEMETER guides active DNA demethylation in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 17563-17571	11.5	12
354	Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition. <i>Nature Structural and Molecular Biology</i> , 2019 , 26, 607-612	17.6	22
353	Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. <i>MBio</i> , 2019 , 10,	7.8	23
352	Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. <i>Journal of Biological Chemistry</i> , 2019 , 294, 10211-10235	5.4	16
351	The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	20
350	Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. <i>Frontiers in Microbiology</i> , 2019 , 10, 623	5.7	6
349	The Genes Reveal the Biosynthetic and Evolutionary Origins of the Group B Hemolytic Lipid, Granadaene. <i>Frontiers in Microbiology</i> , 2019 , 10, 3123	5.7	9
348	Identification of the mAm Methyltransferase PCIF1 Reveals the Location and Functions of mAm in the Transcriptome. <i>Molecular Cell</i> , 2019 , 75, 631-643.e8	17.6	95
347	Structure-function analysis of manganese exporter proteins across bacteria. <i>Journal of Biological Chemistry</i> , 2018 , 293, 5715-5730	5.4	16
346	Evolutionary convergence and divergence in archaeal chromosomal proteins and Chromo-like domains from bacteria and eukaryotes. <i>Scientific Reports</i> , 2018 , 8, 6196	4.9	12

345	Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. <i>Nature</i> , 2018 , 557, 446-451	50.4	73
344	CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog. <i>Developmental Cell</i> , 2018 , 44, 113-129.e8	10.2	61
343	A Nonhemolytic Group B Streptococcus Strain Exhibits Hypervirulence. <i>Journal of Infectious Diseases</i> , 2018 , 217, 983-987	7	12
342	Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3211-E3220	11.5	15
341	Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3201-E3210	11.5	36
340	Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria. <i>Antonie Van Leeuwenhoek</i> , 2018 , 111, 753-760	2.1	3
339	TCREexpressing macrophages induced by a pathogenic murine malaria correlate with parasite burden and enhanced phagocytic activity. <i>PLoS ONE</i> , 2018 , 13, e0201043	3.7	10
338	Unexpected Evolution of Lesion-Recognition Modules in Eukaryotic NER and Kinetoplast DNA Dynamics Proteins from Bacterial Mobile Elements. <i>IScience</i> , 2018 , 9, 192-208	6.1	4
337	Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways. <i>PLoS ONE</i> , 2018 , 13, e0204438	3.7	14
336	Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. <i>Nature Communications</i> , 2018 , 9, 3899	17.4	6
335	Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. <i>BMC Genomics</i> , 2018 , 19, 750	4.5	34
334	Inferring joint sequence-structural determinants of protein functional specificity. ELife, 2018, 7,	8.9	10
333	THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. <i>Nature Immunology</i> , 2017 , 18, 433-441	19.1	43
332	Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. <i>Cell Cycle</i> , 2017 , 16, 1093-1103	4.7	9
331	Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. <i>Journal of Bacteriology</i> , 2017 , 199,	3.5	19
330	A conserved NAD binding pocket that regulates protein-protein interactions during aging. <i>Science</i> , 2017 , 355, 1312-1317	33-3	102
329	Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease. <i>Cell Reports</i> , 2017 , 21, 482-494	10.6	19
328	Multifunctional Involvement of a C2H2 Zinc Finger Protein (PbZfp) in Malaria Transmission, Histone Modification, and Susceptibility to DNA Damage Response. <i>MBio</i> , 2017 , 8,	7.8	3

(2015-2017)

327	GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2017 , 114, 13732-13737	11.5	54
326	Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. <i>PLoS Genetics</i> , 2017 , 13, e1006868	6	18
325	Transcription factors, chromatin proteins and the diversification of Hemiptera. <i>Insect Biochemistry and Molecular Biology</i> , 2016 , 69, 1-13	4.5	11
324	RNA damage in biological conflicts and the diversity of responding RNA repair systems. <i>Nucleic Acids Research</i> , 2016 , 44, 8525-8555	20.1	45
323	Molecular Markers of Radiation Induced Attenuation in Intrahepatic Plasmodium falciparum Parasites. <i>PLoS ONE</i> , 2016 , 11, e0166814	3.7	12
322	Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. <i>Nucleic Acids Research</i> , 2016 , 44, 3513-33	20.1	30
321	The mechanism of force transmission at bacterial focal adhesion complexes. <i>Nature</i> , 2016 , 539, 530-535	50.4	78
320	Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. <i>BioEssays</i> , 2016 , 38, 27-40	4.1	93
319	Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. <i>Molecular Cell</i> , 2015 , 57, 984-994	17.6	81
318	Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia. <i>International Journal of Cardiology</i> , 2015 , 185, 114-6	3.2	18
317	The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. <i>Biology Direct</i> , 2015 , 10, 21	7.2	6
316	DNA Methylation on N6-Adenine in C. elegans. <i>Cell</i> , 2015 , 161, 868-78	56.2	424
315	The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. <i>Molecular Cell</i> , 2015 , 57, 1099-1109	17.6	73
314	Expression, Purification, and Biological Characterization of Babesia microti Apical Membrane Antigen 1. <i>Infection and Immunity</i> , 2015 , 83, 3890-901	3.7	21
313	Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. <i>Nucleic Acids Research</i> , 2015 , 43, 10633-54	20.1	103
312	The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. <i>Current Topics in Microbiology and Immunology</i> , 2015 , 384, 3-32	3.3	72
311	Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions. <i>BMC Bioinformatics</i> , 2015 , 16, 7	3.6	1
310	Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14936-41	11.5	220

309	CHAPTER 11:The TET/JBP Family of Nucleic Acid Base-Modifying 2-Oxoglutarate and Iron-Dependent Dioxygenases. <i>2-Oxoglutarate-Dependent Oxygenases</i> , 2015 , 289-308	1.8	4
308	A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4801-4	16.4	37
307	Multiple enzymatic activities of ParB/Srx superfamily mediate sexual conflict among conjugative plasmids. <i>Nature Communications</i> , 2014 , 5, 5322	17.4	23
306	Selection of the lamprey VLRC antigen receptor repertoire. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14834-9	11.5	27
305	Genomic donor cassette sharing during VLRA and VLRC assembly in jawless vertebrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14828-33	11.5	12
304	Resilience of biochemical activity in protein domains in the face of structural divergence. <i>Current Opinion in Structural Biology</i> , 2014 , 26, 92-103	8.1	33
303	Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. <i>Cold Spring Harbor Perspectives in Biology</i> , 2014 , 6, a016063	10.2	20
302	Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis. <i>BMC Bioinformatics</i> , 2014 , 15, 75	3.6	1
301	An autoinhibitory conformation of the Bacillus subtilis spore coat protein SpoIVA prevents its premature ATP-independent aggregation. <i>FEMS Microbiology Letters</i> , 2014 , 358, 145-53	2.9	12
300	CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. <i>Frontiers in Genetics</i> , 2014 , 5, 102	4.5	118
299	Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1676-83	11.5	41
298	A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications. <i>RNA Biology</i> , 2014 , 11, 360-72	4.8	18
297	Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. <i>Frontiers in Genetics</i> , 2014 , 5, 424	4.5	16
296	The Knickkopf DOMON domain is essential for cuticle differentiation in Drosophila melanogaster. <i>Archives of Insect Biochemistry and Physiology</i> , 2014 , 86, 100-6	2.3	8
295	Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E5149-58	11.5	21
294	New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. <i>Wiley Interdisciplinary Reviews RNA</i> , 2014 , 5, 141-81	9.3	40
293	EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. <i>Developmental Cell</i> , 2014 , 28, 483-96	10.2	52
292	Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. <i>Biology Direct</i> , 2013 , 8, 15	7.2	156

(2012-2013)

291	Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. <i>Biology Direct</i> , 2013 , 8, 13	7.2	26
290	Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila. <i>BMC Bioinformatics</i> , 2013 , 14, 265	3.6	3
289	Novel autoproteolytic and DNA-damage sensing components in the bacterial SOS response and oxidized methylcytosine-induced eukaryotic DNA demethylation systems. <i>Biology Direct</i> , 2013 , 8, 20	7.2	39
288	A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. Journal of Experimental Medicine, 2013 , 210, 1265-81	16.6	116
287	Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. <i>Nature</i> , 2013 , 497, 122-6	50.4	265
286	TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. <i>Nature Reviews Molecular Cell Biology</i> , 2013 , 14, 341-56	48.7	627
285	PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. <i>Nature</i> , 2013 , 499, 223-7	50.4	171
284	Filling out the structural map of the NTF2-like superfamily. <i>BMC Bioinformatics</i> , 2013 , 14, 327	3.6	40
283	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341	3.6	6
282	Evolution of Eukaryotic Chromatin Proteins and Transcription Factors 2013 , 421-502		1
281	Radiation-induced cellular and molecular alterations in asexual intraerythrocytic Plasmodium falciparum. <i>Journal of Infectious Diseases</i> , 2013 , 207, 164-74	7	15
2 80	ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E151-60	11.5	29
279	Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. <i>Nucleic Acids Research</i> , 2013 , 41, 7635-55	20.1	83
278	Interplay between gene expression noise and regulatory network architecture. <i>Trends in Genetics</i> , 2012 , 28, 221-32	8.5	170
277	Insights from the architecture of the bacterial transcription apparatus. <i>Journal of Structural Biology</i> , 2012 , 179, 299-319	3.4	36
276	MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. <i>Cell Reports</i> , 2012 , 2, 1657-69	10.6	85
275	Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and	4.7	36
	evolution of the ciliary compartment. <i>Cell Cycle</i> , 2012 , 11, 3861-75	. ,	

273	Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. <i>Molecular BioSystems</i> , 2012 , 8, 3142-65		61
272	Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. <i>Biology Direct</i> , 2012 , 7, 18	7.2	309
271	ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. <i>Biology Direct</i> , 2012 , 7, 39	7.2	29
270	Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. <i>Biology Direct</i> , 2012 , 7, 40	7.2	86
269	Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. <i>Molecular BioSystems</i> , 2012 , 8, 1661-77		46
268	Evolutionary and Biochemical Aspects of Chemical Stress Resistance in Saccharomyces cerevisiae. <i>Frontiers in Genetics</i> , 2012 , 3, 47	4.5	7
267	Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. <i>Frontiers in Genetics</i> , 2012 , 3, 283	4.5	187
266	Gene flow and biological conflict systems in the origin and evolution of eukaryotes. <i>Frontiers in Cellular and Infection Microbiology</i> , 2012 , 2, 89	5.9	53
265	The natural history of ubiquitin and ubiquitin-related domains. <i>Frontiers in Bioscience - Landmark</i> , 2012 , 17, 1433-60	2.8	36
264	The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. <i>Cell Cycle</i> , 2012 , 11, 119-31	4.7	60
263	Structure of the Plasmodium 6-cysteine s48/45 domain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 6692-7	11.5	51
262	Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 16252-7	11.5	32
261	The scaffolding protein synapse-associated protein 97 is required for enhanced signaling through isotype-switched IgG memory B cell receptors. <i>Science Signaling</i> , 2012 , 5, ra54	8.8	48
260	Structure and evolution of ubiquitin and ubiquitin-related domains. <i>Methods in Molecular Biology</i> , 2012 , 832, 15-63	1.4	33
259	Natural history of the eukaryotic chromatin protein methylation system. <i>Progress in Molecular Biology and Translational Science</i> , 2011 , 101, 105-76	4	50
258	Natural history of eukaryotic DNA methylation systems. <i>Progress in Molecular Biology and Translational Science</i> , 2011 , 101, 25-104	4	144
257	A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. <i>Nucleic Acids Research</i> , 2011 , 39, 4532-52	20.1	130
256	Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. <i>Cell</i> , 2011 , 145, 665-77	56.2	181

255	Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. <i>Gene</i> , 2011 , 475, 63-78	3.8	43
254	Clinical and molecular aspects of malaria fever. <i>Trends in Parasitology</i> , 2011 , 27, 442-9	6.4	43
253	Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. <i>Biology Direct</i> , 2011 , 6, 38	7.2	324
252	Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. <i>Molecular BioSystems</i> , 2011 , 7, 2261-77		49
251	Molecular correlates of experimental cerebral malaria detectable in whole blood. <i>Infection and Immunity</i> , 2011 , 79, 1244-53	3.7	14
250	Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. <i>Nucleic Acids Research</i> , 2011 , 39, 9473-97	20.1	102
249	Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. <i>Nature</i> , 2010 , 468, 839-43	50.4	1023
248	UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes. <i>Bioinformatics</i> , 2010 , 26, 1477-80	7.2	17
247	Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. <i>Nucleic Acids Research</i> , 2010 , 38, 5261-79	20.1	44
246	A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 13408-13	11.5	58
245	CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. <i>Bioinformatics</i> , 2010 , 26, 149-52	7.2	33
244	Myosin 1G is an abundant class I myosin in lymphocytes whose localization at the plasma membrane depends on its ancient divergent pleckstrin homology (PH) domain (Myo1PH). <i>Journal of Biological Chemistry</i> , 2010 , 285, 8675-86	5.4	55
243	Structural basis of oligomerization in septin-like GTPase of immunity-associated protein 2 (GIMAP2). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 20299-304	11.5	37
242	The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. <i>Journal of Structural Biology</i> , 2010 , 172, 294-9	3.4	13
241	Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. <i>Gene</i> , 2010 , 469, 18-30	3.8	93
240	Diversity and evolution of chromatin proteins encoded by DNA viruses. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2010 , 1799, 302-18	6	50
239	Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions. <i>Molecular BioSystems</i> , 2010 , 6, 1475-9	1	10
238	High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeast. <i>Molecular BioSystems</i> , 2010 , 6, 175-81		12

237	Novel eukaryotic enzymes modifying cell-surface biopolymers. <i>Biology Direct</i> , 2010 , 5, 1	7.2	49
236	Presence of a classical RRM-fold palm domain in Thg1-type 3P 5Phucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains. <i>Biology Direct</i> , 2010 , 5, 43	7.2	33
235	Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis. Biology Direct, 2010 , 5, 48	7.2	41
234	The structure of SSO2064, the first representative of Pfam family PF01796, reveals a novel two-domain zinc-ribbon OB-fold architecture with a potential acyl-CoA-binding role. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2010 , 66, 1160-6		15
233	Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2010 , 66, 1167-73		3
232	OST-HTH: a novel predicted RNA-binding domain. <i>Biology Direct</i> , 2010 , 5, 13	7.2	59
231	MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010 , 2, 148-161	6.6	28
230	Impaired Hydroxylation of 5-Methylcytosine In TET2 mutated Patients with Myeloid Malignancies. <i>Blood</i> , 2010 , 116, 1-1	2.2	1
229	Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice. <i>PLoS ONE</i> , 2009 , 4, e6793	3.7	30
228	Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. <i>Molecular Systems Biology</i> , 2009 , 5, 294	12.2	116
227	Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. <i>Cell Cycle</i> , 2009 , 8, 1698-710	4.7	303
226	Apprehending multicellularity: regulatory networks, genomics, and evolution. <i>Birth Defects Research Part C: Embryo Today Reviews</i> , 2009 , 87, 143-64		13
225	Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 75, 895-910	4.2	73
224	Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria. <i>Journal of Biology</i> , 2009 , 8, 29		13
223	Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. <i>Nature Immunology</i> , 2009 , 10, 831-9	19.1	82
222	Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. <i>Nature Structural and Molecular Biology</i> , 2009 , 16, 725-30	17.6	91
221	Methods to reconstruct and compare transcriptional regulatory networks. <i>Methods in Molecular Biology</i> , 2009 , 541, 163-80	1.4	31
220	The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains. <i>Biology Direct</i> , 2009 , 4, 25; discussion 25	7.2	7

(2008-2009)

219	Reconstructing the ubiquitin network: cross-talk with other systems and identification of novel functions. <i>Genome Biology</i> , 2009 , 10, R33	18.3	29
218	HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes. <i>Molecular BioSystems</i> , 2009 , 5, 269-75		46
217	Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. <i>Molecular BioSystems</i> , 2009 , 5, 1636-60		8o
216	Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. <i>Science</i> , 2009 , 324, 930-5	33.3	4222
215	Differences in evolutionary pressure acting within highly conserved ortholog groups. <i>BMC Evolutionary Biology</i> , 2008 , 8, 208	3	4
214	Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. <i>International Journal for Parasitology</i> , 2008 , 38, 1-31	4.3	206
213	Comparison of transcription regulatory interactions inferred from high-throughput methods: what do they reveal?. <i>Trends in Genetics</i> , 2008 , 24, 319-23	8.5	18
212	A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. <i>Biology Direct</i> , 2008 , 3, 39	7.2	24
211	Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. <i>Biology Direct</i> , 2008 , 3, 45	7.2	84
210	MutL homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases. <i>Biology Direct</i> , 2008 , 3, 8	7.2	88
209	Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. <i>Journal of Structural Biology</i> , 2008 , 162, 205-18	3.4	73
208	The conserved protein SZY-20 opposes the Plk4-related kinase ZYG-1 to limit centrosome size. <i>Developmental Cell</i> , 2008 , 15, 901-12	10.2	47
207	AMIN domains have a predicted role in localization of diverse periplasmic protein complexes. <i>Bioinformatics</i> , 2008 , 24, 2423-6	7.2	12
206	Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. <i>Infection and Immunity</i> , 2008 , 76, 4518-29	3.7	26
205	Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of sirtuin domain deacetylases by NAD metabolites. <i>Cell Cycle</i> , 2008 , 7, 1467-72	4.7	36
204	Centrins, cell cycle regulation proteins in human malaria parasite Plasmodium falciparum. <i>Journal of Biological Chemistry</i> , 2008 , 283, 31871-83	5.4	45
203	BEN: a novel domain in chromatin factors and DNA viral proteins. <i>Bioinformatics</i> , 2008 , 24, 458-61	7.2	63
202	The X-ray crystallographic structure and activity analysis of a Pseudomonas-specific subfamily of the HAD enzyme superfamily evidences a novel biochemical function. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 70, 197-207	4.2	5

201	Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biology Direct, 2007 , 2, 18	7.2	110
200	A novel superfamily containing the beta-grasp fold involved in binding diverse soluble ligands. Biology Direct, 2007 , 2, 4	7.2	28
199	The two faces of short-range evolutionary dynamics of regulatory modes in bacterial transcriptional regulatory networks. <i>BioEssays</i> , 2007 , 29, 625-9	4.1	2
198	Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. <i>Nature Immunology</i> , 2007 , 8, 647-56	19.1	228
197	An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. <i>Molecular Microbiology</i> , 2007 , 64, 738-54	4.1	194
196	Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. <i>BMC Bioinformatics</i> , 2007 , 8, 173	3.6	66
195	Incarnation of classical pro- and eukaryotic mechanisms of mutagenesis in hypermutagenesis and immunity of vertebrates. <i>Russian Journal of Genetics</i> , 2007 , 43, 1093-1107	0.6	
194	Domain architectures of the Scm3p protein provide insights into centromere function and evolution. <i>Cell Cycle</i> , 2007 , 6, 2511-5	4.7	25
193	Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. <i>Genome Dynamics</i> , 2007 , 3, 48-65		76
192	General trends in the evolution of prokaryotic transcriptional regulatory networks. <i>Genome Dynamics</i> , 2007 , 3, 66-80		13
191	The DOMON domains are involved in heme and sugar recognition. <i>Bioinformatics</i> , 2007 , 23, 2660-4	7.2	50
190	Molecular factors and biochemical pathways induced by febrile temperature in intraerythrocytic Plasmodium falciparum parasites. <i>Infection and Immunity</i> , 2007 , 75, 2012-25	3.7	111
189	Adhesion molecules and other secreted host-interaction determinants in Apicomplexa: insights from comparative genomics. <i>International Review of Cytology</i> , 2007 , 262, 1-74		46
188	The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. <i>Nucleic Acids Research</i> , 2007 , 35, 5658-71	20.1	29
187	Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli. <i>Journal of Molecular Biology</i> , 2007 , 372, 1108-6	9 - ∮22	49
186	Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. <i>Annual Review of Microbiology</i> , 2007 , 61, 453-75	17.5	52
185	Comparative genomics and structural biology of the molecular innovations of eukaryotes. <i>Current Opinion in Structural Biology</i> , 2006 , 16, 409-19	8.1	82
184	The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. <i>Cell Cycle</i> , 2006 , 5, 775-82	4.7	73

183	The NYN domains: novel predicted RNAses with a PIN domain-like fold. RNA Biology, 2006, 3, 18-27	4.8	97
182	The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. <i>Journal of Cell Science</i> , 2006 , 119, 370-9	5.3	47
181	A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. <i>Journal of Bacteriology</i> , 2006 , 188, 2761-73	3.5	225
180	The ASCH superfamily: novel domains with a fold related to the PUA domain and a potential role in RNA metabolism. <i>Bioinformatics</i> , 2006 , 22, 257-63	7.2	32
179	Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 51-6	11.5	113
178	The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. <i>Genome Biology</i> , 2006 , 7, R60	18.3	122
177	The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. <i>Nucleic Acids Research</i> , 2006 , 34, 6505-20	20.1	130
176	The signaling helix: a common functional theme in diverse signaling proteins. <i>Biology Direct</i> , 2006 , 1, 25	7.2	101
175	Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase. <i>Journal of Molecular Biology</i> , 2006 , 356, 823-42	6.5	17
174	Evolutionary dynamics of prokaryotic transcriptional regulatory networks. <i>Journal of Molecular Biology</i> , 2006 , 358, 614-33	6.5	217
173	Uncovering a hidden distributed architecture behind scale-free transcriptional regulatory networks. Journal of Molecular Biology, 2006 , 360, 204-12	6.5	61
172	Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. <i>Journal of Molecular Biology</i> , 2006 , 360, 213-27	6.5	174
171	Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. <i>Journal of Molecular Biology</i> , 2006 , 361, 1003-34	6.5	315
170	Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. <i>Virus Research</i> , 2006 , 117, 156-84	6.4	455
169	Adaptive evolution by optimizing expression levels in different environments. <i>Trends in Microbiology</i> , 2006 , 14, 11-4	12.4	38
168	Global transcriptional effects of PEG-IFN-alpha and ribavirin on peripheral blood cells obtained from patients with chronic hepatitis C. <i>Hepatology Research</i> , 2006 , 36, 277-87	5.1	
167	Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. <i>Nucleic Acids Research</i> , 2005 , 33, 3875-96	20.1	201
166	Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. <i>Genome Biology</i> , 2005 , 6, R4	18.3	190

165	The many faces of the helix-turn-helix domain: Transcription regulation and beyond. <i>FEMS Microbiology Reviews</i> , 2005 , 29, 231-262	15.1	300
164	Plasmodium falciparum: characterization of a late asexual stage golgi protein containing both ankyrin and DHHC domains. <i>Experimental Parasitology</i> , 2005 , 110, 389-93	2.1	12
163	The many faces of the helix-turn-helix domain: transcription regulation and beyond. <i>FEMS Microbiology Reviews</i> , 2005 , 29, 231-62	15.1	339
162	MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. <i>Bioinformatics</i> , 2005 , 21, 2805-11	7.2	20
161	Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. <i>Nucleic Acids Research</i> , 2005 , 33, 3994-4006	20.1	341
160	Comparative Genomics, Evolution and Origins of the Nuclear Envelope and Nuclear Pore Complex. <i>Cell Cycle</i> , 2004 , 3, 1625-1650	4.7	206
159	Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. <i>Cell Cycle</i> , 2004 , 3, 1440-50	4.7	89
158	Comparative analysis of apicomplexa and genomic diversity in eukaryotes. <i>Genome Research</i> , 2004 , 14, 1686-95	9.7	149
157	A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. <i>Nucleic Acids Research</i> , 2004 , 32, 1439-47	20.1	82
156	Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. <i>Cell Cycle</i> , 2004 , 3, 1612-37	4.7	263
155	A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito. <i>Journal of Experimental Medicine</i> , 2004 , 199, 1533-44	16.6	94
154	Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. <i>Nucleic Acids Research</i> , 2004 , 32, 5260-79	20.1	234
153	De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. <i>Nature</i> , 2004 , 430, 694-9	50.4	1453
152	Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role?. <i>Trends in Genetics</i> , 2004 , 20, 292-9	8.5	157
151	Structure and evolution of transcriptional regulatory networks. <i>Current Opinion in Structural Biology</i> , 2004 , 14, 283-91	8.1	556
150	Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. <i>Cancer Cell</i> , 2004 , 5, 137-49	24.3	110
149	Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. <i>BMC Genomics</i> , 2004 , 5, 45	4.5	66
148	The emergence of catalytic and structural diversity within the beta-clip fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 2004 , 55, 977-91	4.2	22

(2003-2004)

147	The SHS2 module is a common structural theme in functionally diverse protein groups, like Rpb7p, FtsA, GyrI, and MTH1598/TM1083 superfamilies. <i>Proteins: Structure, Function and Bioinformatics</i> , 2004 , 56, 795-807	4.2	21
146	Complete genome sequence of the apicomplexan, Cryptosporidium parvum. <i>Science</i> , 2004 , 304, 441-5	33.3	757
145	A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain. <i>Genome Biology</i> , 2004 , 5, R30	18.3	43
144	Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. <i>Gene</i> , 2004 , 335, 73-88	3.8	95
143	The C. elegans Polycomb gene SOP-2 encodes an RNA binding protein. <i>Molecular Cell</i> , 2004 , 14, 841-7	17.6	51
142	Evolutionary history and higher order classification of AAA+ ATPases. <i>Journal of Structural Biology</i> , 2004 , 146, 11-31	3.4	622
141	STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. <i>Journal of Molecular Biology</i> , 2004 , 343, 1-28	6.5	327
140	Provenance of SET-Domain Histone Methyltransferases Through Duplication of a Simple Structural Unit. <i>Cell Cycle</i> , 2003 , 2, 366-373	4.7	27
139	Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. <i>BMC Genomics</i> , 2003 , 4, 34	4.5	67
138	Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. <i>BMC Genomics</i> , 2003 , 4, 5	4.5	148
137	HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. <i>FEMS Microbiology Letters</i> , 2003 , 222, 17-23	2.9	45
136	Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. <i>Current Opinion in Chemical Biology</i> , 2003 , 7, 12-20	9.7	133
135	Multiple transporters associated with malaria parasite responses to chloroquine and quinine. <i>Molecular Microbiology</i> , 2003 , 49, 977-89	4.1	219
134	Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. <i>BMC Structural Biology</i> , 2003 , 3, 1	2.7	175
133	Diversification and spectral tuning in marine proteorhodopsins. <i>EMBO Journal</i> , 2003 , 22, 1725-31	13	231
132	Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective. <i>Current Opinion in Microbiology</i> , 2003 , 6, 490-7	7.9	47
131	Evolution and classification of P-loop kinases and related proteins. <i>Journal of Molecular Biology</i> , 2003 , 333, 781-815	6.5	216
130	Differential action of natural selection on the N and C-terminal domains of 2P5Poligoadenylate synthetases and the potential nuclease function of the C-terminal domain. <i>Journal of Molecular Biology</i> 2003, 326, 1449-61	6.5	34

129	Plasmodium biology: genomic gleanings. <i>Cell</i> , 2003 , 115, 771-85	56.2	258
128	New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. <i>Genome Biology</i> , 2003 , 4, R81	18.3	199
127	The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. <i>Genome Biology</i> , 2003 , 4, R64	18.3	114
126	Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. <i>Genome Biology</i> , 2003 , 4, R11	18.3	268
125	Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-binding protein Ssb. <i>Journal of Molecular Microbiology and Biotechnology</i> , 2003 , 5, 225-9	0.9	20
124	Scores of RINGS but no PHDs in ubiquitin signaling. <i>Cell Cycle</i> , 2003 , 2, 123-6	4.7	79
123	Provenance of SET-domain histone methyltransferases through duplication of a simple structural unit. <i>Cell Cycle</i> , 2003 , 2, 369-76	4.7	13
122	The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates. <i>BMC Genomics</i> , 2002 , 3, 33	4.5	61
121	Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. <i>BMC Genomics</i> , 2002 , 3, 8	4.5	136
120	SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. <i>Trends in Biochemical Sciences</i> , 2002 , 27, 384-6	10.3	61
119	Trends in protein evolution inferred from sequence and structure analysis. <i>Current Opinion in Structural Biology</i> , 2002 , 12, 392-9	8.1	122
118	Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 46, 355-67	4.2	148
117	Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 48, 1-14	4.2	123
116	Origin and evolution of eukaryotic apoptosis: the bacterial connection. <i>Cell Death and Differentiation</i> , 2002 , 9, 394-404	12.7	323
115	MOSC domains: ancient, predicted sulfur-carrier domains, present in diverse metal-sulfur cluster biosynthesis proteins including Molybdenum cofactor sulfurases. <i>FEMS Microbiology Letters</i> , 2002 , 207, 55-61	2.9	61
114	A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. <i>Nucleic Acids Research</i> , 2002 , 30, 482-96	20.1	273
113	Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 335-45	4.8	149
112	The role of lineage-specific gene family expansion in the evolution of eukaryotes. <i>Genome Research</i> , 2002 , 12, 1048-59	9.7	332

(2001-2002)

111	Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily. <i>Nucleic Acids Research</i> , 2002 , 30, 5229-43	20.1	117
110	The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4644-9	11.5	263
109	Comparative genomics and evolution of proteins involved in RNA metabolism. <i>Nucleic Acids Research</i> , 2002 , 30, 1427-64	20.1	383
108	Intraproteomic networks: new forays into predicting interaction partners. <i>Genome Research</i> , 2002 , 12, 1156-8	9.7	
107	YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics. <i>Biochemistry</i> , 2002 , 41, 11109-17	3.2	68
106	Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. <i>Science</i> , 2002 , 298, 611-5	33.3	822
105	Classification and evolution of P-loop GTPases and related ATPases. <i>Journal of Molecular Biology</i> , 2002 , 317, 41-72	6.5	882
104	Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. <i>Science</i> , 2002 , 298, 608-11	33.3	578
103	The PRC-barrel: a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. <i>Genome Biology</i> , 2002 , 3, RESEARCH0061	18.3	28
102	The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. <i>Genome Biology</i> , 2002 , 3, RESEARCH0039	18.3	74
101	The GOLD domain, a novel protein module involved in Golgi function and secretion. <i>Genome Biology</i> , 2002 , 3, research0023	18.3	80
100	Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. <i>Genome Biology</i> , 2002 , 3, RESEARCH0012	18.3	88
99	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 43, 134-44	4.2	194
98	Horizontal gene transfer in prokaryotes: quantification and classification. <i>Annual Review of Microbiology</i> , 2001 , 55, 709-42	17.5	859
97	Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. <i>Nucleic Acids Research</i> , 2001 , 29, 2994-3005	20.1	1013
96	TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. <i>FEMS Microbiology Letters</i> , 2001 , 197, 215-21	2.9	57
95	Initial sequencing and analysis of the human genome. <i>Nature</i> , 2001 , 409, 860-921	50.4	17366
94	The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. <i>Trends in Biochemical Sciences</i> , 2001 , 26, 273-5	10.3	155

93	THUMPa predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases. <i>Trends in Biochemical Sciences</i> , 2001 , 26, 215-7	10.3	71
92	DOMON: an ancient extracellular domain in dopamine beta-monooxygenase and other proteins. <i>Trends in Biochemical Sciences</i> , 2001 , 26, 524-6	10.3	33
91	The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. <i>Trends in Biochemical Sciences</i> , 2001 , 26, 579-82	10.3	128
90	Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. <i>Genome Research</i> , 2001 , 11, 1365-74	9.7	213
89	Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. <i>Genome Research</i> , 2001 , 11, 240-52	9.7	204
88	Common origin of four diverse families of large eukaryotic DNA viruses. <i>Journal of Virology</i> , 2001 , 75, 11720-34	6.6	419
87	Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. <i>Human Molecular Genetics</i> , 2001 , 10, 1627-30	5.6	40
86	The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. <i>Genome Biology</i> , 2001 , 2, RESEARCH0007	18.3	337
85	Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. <i>Science</i> , 2001 , 291, 1279-84	33.3	279
84	Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. <i>Journal of Molecular Biology</i> , 2001 , 307, 1271-92	6.5	224
83	A natural classification of ribonucleases. <i>Methods in Enzymology</i> , 2001 , 341, 3-28	1.7	46
82	Computational analysis of human disease-associated genes and their protein products. <i>Current Opinion in Genetics and Development</i> , 2001 , 11, 247-57	4.9	11
81	Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. <i>Microbiology and Molecular Biology Reviews</i> , 2001 , 65, 44-79	13.2	512
80	Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. <i>Genetics</i> , 2001 , 158, 95-107	4	100
79	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily 2001 , 43, 134		2
78	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily 2001 , 43, 134		3
77	Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. <i>Environmental Microbiology</i> , 2000 , 2, 516-29	5.2	277

(2000-2000)

75	The U box is a modified RING finger - a common domain in ubiquitination. <i>Current Biology</i> , 2000 , 10, R1	326.4	309
74	Dynein light chains of the Roadblock/LC7 group belong to an ancient protein superfamily implicated in NTPase regulation. <i>Current Biology</i> , 2000 , 10, R774-6	6.3	65
73	The NACHT family - a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 223-4	10.3	256
7 2	The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 421-3	10.3	118
71	Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 535-7	10.3	149
70	A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 50-2	10.3	207
69	SAP - a putative DNA-binding motif involved in chromosomal organization. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 112-4	10.3	409
68	Exploring histones and their relatives with the Histone Sequence Database. <i>Trends in Genetics</i> , 2000 , 16, 517-8	8.5	2
67	Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. <i>Genetica</i> , 2000 , 108, 25-34	1.5	29
66	Lineage-specific loss and divergence of functionally linked genes in eukaryotes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 11319-24	11.5	237
65	SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. <i>Nucleic Acids Research</i> , 2000 , 28, 3417-32	20.1	257
64	Protein fold recognition using sequence profiles and its application in structural genomics. <i>Advances in Protein Chemistry</i> , 2000 , 54, 245-75		72
63	The histone database: a comprehensive WWW resource for histones and histone fold-containing proteins. <i>Nucleic Acids Research</i> , 2000 , 28, 320-2	20.1	27
62	Guilt by association: contextual information in genome analysis. <i>Genome Research</i> , 2000 , 10, 1074-7	9.7	125
61	Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. <i>Genome Research</i> , 2000 , 10, 1172-84	9.7	68
60	Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. <i>Infection and Immunity</i> , 2000 , 68, 1633-48	3.7	55
59	Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. <i>Journal of Biological Chemistry</i> , 2000 , 275, 10331-41	5.4	91
58	Bacterial-type DNA holliday junction resolvases in eukaryotic viruses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 8926-31	11.5	84

57	The impact of comparative genomics on our understanding of evolution. <i>Cell</i> , 2000 , 101, 573-6	56.2	227
56	Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. <i>Science</i> , 2000 , 289, 1902-6	33.3	1143
55	Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs). <i>Genome Biology</i> , 2000 , 1, RESEARCH0009	18.3	75
54	The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. <i>Genome Biology</i> , 2000 , 1, RESEARCH0007	18.3	107
53	The bacterial replicative helicase DnaB evolved from a RecA duplication. <i>Genome Research</i> , 2000 , 10, 5-16	9.7	148
52	Bacterial homologs of the small subunit of eukaryotic DNA primase. <i>Journal of Molecular Microbiology and Biotechnology</i> , 2000 , 2, 509-12	0.9	17
51	Did DNA replication evolve twice independently?. <i>Nucleic Acids Research</i> , 1999 , 27, 3389-401	20.1	280
50	DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. <i>Nucleic Acids Research</i> , 1999 , 27, 1609-18	20.1	261
49	DNA-binding proteins and evolution of transcription regulation in the archaea. <i>Nucleic Acids Research</i> , 1999 , 27, 4658-70	20.1	192
48	Conserved domains in DNA repair proteins and evolution of repair systems. <i>Nucleic Acids Research</i> , 1999 , 27, 1223-42	20.1	442
47	IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. <i>Bioinformatics</i> , 1999 , 15, 1000-11	7.2	262
46	Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 11922-7	11.5	188
45	The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. <i>FEMS Microbiology Letters</i> , 1999 , 176, 111-6	2.9	326
44	A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. <i>Protein Science</i> , 1999 , 8, 1714-9	6.3	142
43	Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. <i>Science</i> , 1999 , 286, 157	133 .3	760
42	Novel predicted RNA-binding domains associated with the translation machinery. <i>Journal of Molecular Evolution</i> , 1999 , 48, 291-302	3.1	149
41	Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. <i>Trends in Genetics</i> , 1999 , 15, 173-5	8.5	117
40	The domains of death: evolution of the apoptosis machinery. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 47-53	10.3	347

START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 130-2	10.3	337
No Sec7-homology domain in guanine-nucleotide-exchange factors that act on Ras and Rho. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 177-8	10.3	2
G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 342-4	10.3	131
Origin of multicellular eukaryotes - insights from proteome comparisons. <i>Current Opinion in Genetics and Development</i> , 1999 , 9, 688-94	4.9	43
Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. <i>Journal of Molecular Biology</i> , 1999 , 285, 1353-61	6.5	146
Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. <i>Journal of Molecular Biology</i> , 1999 , 287, 1023-40	6.5	380
Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. <i>Journal of Molecular Biology</i> , 1999 , 289, 729-45	6.5	280
A specialized version of the HD hydrolase domain implicated in signal transduction. <i>Journal of Molecular Microbiology and Biotechnology</i> , 1999 , 1, 303-5	0.9	73
Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. <i>Genome Research</i> , 1999 , 9, 608-628	9.7	119
AAA+: A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. <i>Genome Research</i> , 1999 , 9, 27-43	9.7	890
Evolution of Aminoacyl-tRNA SynthetasesAnalysis of Unique Domain Architectures and Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer Events. <i>Genome Research</i> , 1999 , 9, 689-710	9.7	196
AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. <i>Genome Research</i> , 1999 , 9, 27-43	9.7	1292
Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. <i>Genome Research</i> , 1999 , 9, 608-28	9.7	189
Evolution of aminoacyl-tRNA synthetasesanalysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. <i>Genome Research</i> , 1999 , 9, 689-710	9.7	301
An evolutionary classification of the metallo-beta-lactamase fold proteins. <i>In Silico Biology</i> , 1999 , 1, 69-	-91	136
Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. <i>Trends in Genetics</i> , 1998 , 14, 442-4	8.5	294
A colipase fold in the carboxy-terminal domain of the Wnt antagoniststhe Dickkopfs. <i>Current Biology</i> , 1998 , 8, R477-8	6.3	52
A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 17-9	10.3	134
	No Sec7-homology domain in guanine-nucleotide-exchange factors that act on Ras and Rho. <i>Trends in Biochemical Sciences</i> , 1999, 24, 177-8 G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. <i>Trends in Biochemical Sciences</i> , 1999, 24, 342-4 Origin of multicellular eukaryotes - insights from proteome comparisons. <i>Current Opinion in Genetics and Development</i> , 1999, 9, 688-94 Origin of multicellular eukaryotes - insights from proteome comparisons. <i>Current Opinion in Genetics and Development</i> , 1999, 9, 688-94 Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. <i>Journal of Molecular Biology</i> , 1999, 285, 1353-61 Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. <i>Journal of Molecular Biology</i> , 1999, 287, 1023-40 Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. <i>Journal of Molecular Biology</i> , 1999, 1899, 289, 729-45 A specialized version of the HD hydrolase domain implicated in signal transduction. <i>Journal of Molecular Microbiology and Biotechnology</i> , 1999, 1, 303-5 Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. <i>Genome Research</i> , 1999, 9, 608-628 AAA+: A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. <i>Genome Research</i> , 1999, 9, 27-43 Evolution of Aminoacyl-tRNA synthetases-Analysis of Unique Domain Architectures and Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer Events. <i>Genome Research</i> , 1999, 9, 689-710 AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. <i>Genome Research</i> , 1999, 9, 599, 9, 899-710 An evolution of aminoacyl-tRNA synthetases-analysis of Unique Domain Architectures	No Sec7-homology domain in guanine-nucleotide-exchange factors that act on Ras and Rho. <i>Trends in Biochemical Sciences</i> , 1999, 24, 177-8 G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. <i>Trends in Biochemical Sciences</i> , 1999, 24, 342-4 Origin of multicellular eukaryotes- insights from proteome comparisons. <i>Current Opinion in Genetics and Development</i> , 1999, 9, 688-94 Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. <i>Journal of Molecular Biology</i> , 1999, 285, 1353-61 Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. <i>Journal of Molecular Biology</i> , 1999, 287, 1023-40 Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. <i>Journal of Molecular Biology</i> , 1999, 289, 729-45 A specialized version of the HD hydrolase domain implicated in signal transduction. <i>Journal of Molecular Biology and Biotechnology</i> , 1999, 1, 303-5 Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. <i>Genome Research</i> , 1999, 9, 608-628 AAA+: A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. <i>Genome Research</i> , 1999, 9, 27-43 Evolution of Aminoacyl-tRNA SynthetasesAnalysis of Unique Domain Architectures and Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer Events. <i>Genome Research</i> , 1999, 9, 689-710 AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of Protein complexes. <i>Genome Research</i> , 1999, 9, 689-710 AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. <i>Genome Research</i> , 1999, 9, 689-28 Evolution of aminoacyl-tRNA synthetases-analysis of unique domain architectures and ph

21	The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 127-9	10.3	240
20	The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 284-6	10.3	164
19	The HD domain defines a new superfamily of metal-dependent phosphohydrolases. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 469-72	10.3	370
18	Homologues of 26S proteasome subunits are regulators of transcription and translation. <i>Protein Science</i> , 1998 , 7, 1250-4	6.3	113
17	Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. <i>Science</i> , 1998 , 282, 754-9	33.3	1198
16	Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. <i>Science</i> , 1998 , 282, 1	12 6 332	350
15	Comparison of the complete protein sets of worm and yeast: orthology and divergence. <i>Science</i> , 1998 , 282, 2022-8	33.3	339
14	AT-hook motifs identified in a wide variety of DNA-binding proteins. <i>Nucleic Acids Research</i> , 1998 , 26, 4413-21	20.1	354
13	Phosphoesterase domains associated with DNA polymerases of diverse origins. <i>Nucleic Acids Research</i> , 1998 , 26, 3746-52	20.1	203
12	Toprima conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. <i>Nucleic Acids Research</i> , 1998 , 26, 4205-13	20.1	290
11	Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. <i>Genome Research</i> , 1998 , 8, 1038-47	9.7	253
10	Second Family of Histone Deacetylases. <i>Science</i> , 1998 , 280, 1167a-1167	33.3	32
9	PAS: a multifunctional domain family comes to light. <i>Current Biology</i> , 1997 , 7, R674-7	6.3	278
8	The GAF domain: an evolutionary link between diverse phototransducing proteins. <i>Trends in Biochemical Sciences</i> , 1997 , 22, 458-9	10.3	489
7	PSI-BLAST Tutorial177-186		3
6	The Phage-shock-protein (PSP) Envelope Stress Response: Discovery of Novel Partners and Evolutionary History		1
5	The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins		10
4	Origin and evolution of eukaryotic apoptosis: the bacterial connection		6

LIST OF PUBLICATIONS

3	A ubiquitin-based mechanism for the oligogenic inheritance of heterotaxy and heart defects	1
2	Discovery of the role of a SLOG superfamily biological conflict systems associated protein IodA (YpsA) in oxidative stress protection and cell division inhibition in Gram-positive bacteria	1
1	NONU-1 encodes a conserved endonuclease required for mRNA translation surveillance	1