
Matteo Pedrelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Soat2</i> ties cholesterol metabolism to βâ€oxidation and glucose tolerance in male mice. Journal of Internal Medicine, 2022, 292, 296-307.	6.0	6
2	Follicular fluid and blood levels of persistent organic pollutants and reproductive outcomes among women undergoing assisted reproductive technologies. Environmental Research, 2022, 208, 112626.	7.5	25
3	HDLâ€mediated reduction of cholesterol content inhibits the proliferation of prostate cancer cells induced by LDL: Role of ABCA1 and proteasome inhibition. BioFactors, 2022, 48, 707-717.	5.4	5
4	Vasculoprotective properties of plasma lipoproteins from brown bears (Ursus arctos). Journal of Lipid Research, 2021, 62, 100065.	4.2	5
5	Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. Environment International, 2021, 155, 106589.	10.0	28
6	Abstract 10979: Liver-Humanized Mice Provide a New Platform to Study Human Cardiometabolic Diseases. Circulation, 2021, 144, .	1.6	0
7	Abstract 10013: PRDs Are Multifunctional Oral Inhibitors of PCSK9 and ACAT2. Circulation, 2021, 144, .	1.6	0
8	Insights From Liverâ€Humanized Mice on Cholesterol Lipoprotein Metabolism and LXRâ€Agonist Pharmacodynamics in Humans. Hepatology, 2020, 72, 656-670.	7.3	23
9	Lack of RAC1 in macrophages protects against atherosclerosis. PLoS ONE, 2020, 15, e0239284.	2.5	13
10	The PPAR pan-agonist tetradecylthioacetic acid promotes redistribution of plasma cholesterol towards large HDL. PLoS ONE, 2020, 15, e0229322.	2.5	4
11	Generation of new hepatocyte-like in vitro models better resembling human lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158659.	2.4	2
12	Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease. JCI Insight, 2020, 5, .	5.0	14
13	Enzymatic Quantification of Liver Lipids After Folch Extraction. Methods in Molecular Biology, 2020, 2164, 101-108.	0.9	10
14	Lack of RAC1 in macrophages protects against atherosclerosis. , 2020, 15, e0239284.		0
15	Lack of RAC1 in macrophages protects against atherosclerosis. , 2020, 15, e0239284.		0
16	Lack of RAC1 in macrophages protects against atherosclerosis. , 2020, 15, e0239284.		0
17	Subclinical atherosclerosis and its progression are modulated by <i>PLIN2</i> through a feedâ€forward loop between LXR and autophagy. Journal of Internal Medicine, 2019, 286, 660-675.	6.0	18
18	Sex-specific lipid molecular signatures in obesity-associated metabolic dysfunctions revealed by lipidomic characterization in ob/ob mouse. Biology of Sex Differences, 2019, 10, 11.	4.1	30

MATTEO PEDRELLI

#	Article	IF	CITATIONS
19	Effects on hepatic lipid metabolism in human hepatoma cells following overexpression of TGFβ induced factor homeobox 1 or 2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 756-762.	2.4	3
20	Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nature Communications, 2019, 10, 1684.	12.8	48
21	Genetic depletion of Soat2 diminishes hepatic steatosis via genes regulating de novo lipogenesis and by GLUT2 protein in female mice. Digestive and Liver Disease, 2019, 51, 1016-1022.	0.9	8
22	ERβ activation in obesity improves whole body metabolism via adipose tissue function and enhanced mitochondria biogenesis. Molecular and Cellular Endocrinology, 2019, 479, 147-158.	3.2	31
23	STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1723-1737.	2.4	12
24	Lipids around the Clock: Focus on Circadian Rhythms and Lipid Metabolism. Biology, 2015, 4, 104-132.	2.8	77
25	Hepatic ACAT2 Knock Down Increases ABCA1 and Modifies HDL Metabolism in Mice. PLoS ONE, 2014, 9, e93552.	2.5	26
26	Fasting-Induced FGF21 Is Repressed by LXR Activation via Recruitment of an HDAC3 Corepressor Complex in Mice. Molecular Endocrinology, 2012, 26, 1980-1990.	3.7	29
27	Role of thyroid receptor β in lipid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 929-937.	3.8	48
28	The thienotriazolodiazepine Ro 11â€1464 increases plasma apoAâ€I and promotes reverse cholesterol transport in human apoAâ€I transgenic mice. British Journal of Pharmacology, 2011, 164, 1642-1651.	5.4	10
29	Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E210-E222.	3.5	44
30	Macrophage, But Not Systemic, Apolipoprotein E Is Necessary for Macrophage Reverse Cholesterol Transport In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 74-80.	2.4	60
31	Manidipine reduces pro-inflammatory cytokines secretion in human endothelial cells and macrophages. Pharmacological Research, 2010, 62, 265-270.	7.1	8
32	Thyroid hormones and thyroid hormone receptors: effects of thyromimetics on reverse cholesterol transport. World Journal of Gastroenterology, 2010, 16, 5958-64.	3.3	26
33	Functional LCAT is not required for macrophage cholesterol efflux to human serum. Atherosclerosis, 2009, 204, 141-146.	0.8	75
34	The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. Journal of Lipid Research, 2008, 49, 954-960.	4.2	54