Rodrigo Fernandez-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549729/publications.pdf

Version: 2024-02-01

67 papers

3,680 citations

236612 25 h-index 55 g-index

76 all docs

76 docs citations

76 times ranked 4319 citing authors

#	Article	IF	CITATIONS
1	PyJAMAS: open-source, multimodal segmentation and analysis of microscopy images. Bioinformatics, 2022, 38, 594-596.	1.8	13
2	Crumbs complex–directed apical membrane dynamics in epithelial cell ingression. Journal of Cell Biology, 2022, 221, .	2.3	9
3	Introduction: CANFLY XV 2019. Genome, 2021, 64, vii-viii.	0.9	0
4	The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. ELife, $2021,10,10$	2.8	9
5	Myosin cables control the timing of tissue internalization in the Drosophila embryo. Cells and Development, 2021, , 203721.	0.7	5
6	Pak1 and PP2A antagonize aPKC function to support cortical tension induced by the Crumbs-Yurt complex. ELife, 2021, 10 , .	2.8	9
7	Multiscale In Vivo Imaging of Collective Cell Migration in Drosophila Embryos. Methods in Molecular Biology, 2021, 2179, 199-224.	0.4	8
8	p38-mediated cell growth and survival drive rapid embryonic wound repair. Cell Reports, 2021, 37, 109874.	2.9	13
9	DDR1 (Discoidin Domain Receptor-1)-RhoA (Ras Homolog Family Member A) Axis Senses Matrix Stiffness to Promote Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1763-1776.	1.1	24
10	REEP5 depletion causes sarco-endoplasmic reticulum vacuolization and cardiac functional defects. Nature Communications, 2020, 11, 965.	5.8	28
11	The Crk adapter protein is essential for <i>Drosophila</i> embryogenesis, where it regulates multiple actin-dependent morphogenic events. Molecular Biology of the Cell, 2019, 30, 2399-2421.	0.9	5
12	Role of \hat{l}_{\pm} -Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growth. PLoS Genetics, 2019, 15, e1008454.	1.5	34
13	Actin and myosin dynamics are independent during (i>Drosophila (i>embryonic wound repair. Molecular Biology of the Cell, 2019, 30, 2901-2912.	0.9	5
14	Forceful closure: cytoskeletal networks in embryonic wound repair. Molecular Biology of the Cell, 2019, 30, 1353-1358.	0.9	30
15	Dynamic force patterns promote collective cell movements during embryonic wound repair. Nature Physics, 2018, 14, 750-758.	6.5	55
16	Oriented Cell Division: The Pull of the Pole. Developmental Cell, 2018, 47, 686-687.	3.1	1
17	Force-dependent allostery of the \hat{l}_{\pm} -catenin actin-binding domain controls adherens junction dynamics and functions. Nature Communications, 2018, 9, 5121.	5.8	86
18	Oxidative Stress Orchestrates Cell Polarity to Promote Embryonic Wound Healing. Developmental Cell, 2018, 47, 377-387.e4.	3.1	55

#	Article	IF	CITATIONS
19	Collision of Expanding Actin Caps with Actomyosin Borders for Cortical Bending and Mitotic Rounding in a Syncytium. Developmental Cell, 2018, 45, 551-564.e4.	3.1	32
20	Modeling cell intercalation during <i>Drosophila</i>)germband extension. Physical Biology, 2018, 15, 066008.	0.8	11
21	Tension regulates myosin dynamics during <i>Drosophila</i> embryonic wound repair. Journal of Cell Science, 2017, 130, 689-696.	1.2	39
22	Automated cell tracking identifies mechanically-oriented cell divisions during <i>Drosophila</i> axis elongation. Development (Cambridge), 2017, 144, 1350-1361.	1.2	33
23	Coordinating cell movements in vivo: junctional and cytoskeletal dynamics lead the way. Current Opinion in Cell Biology, 2017, 48, 54-62.	2.6	29
24	Myosin II promotes the anisotropic loss of the apical domain during <i>Drosophila</i> neuroblast ingression. Journal of Cell Biology, 2017, 216, 1387-1404.	2.3	62
25	Cell–cell and cell–extracellular matrix adhesions cooperate to organize actomyosin networks and maintain force transmission during dorsal closure. Molecular Biology of the Cell, 2017, 28, 1301-1310.	0.9	47
26	Shape of my heart: Cell-cell adhesion and cytoskeletal dynamics during Drosophila cardiac morphogenesis. Experimental Cell Research, 2017, 358, 65-70.	1,2	2
27	Tension (re)builds: Biophysical mechanisms of embryonic wound repair. Mechanisms of Development, 2017, 144, 43-52.	1.7	27
28	(Machine-)Learning to analyze in vivo microscopy: Support vector machines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1719-1727.	1.1	9
29	A stepwise model of Reaction-Diffusion and Positional-Information governs self-organized human peri-gastrulation-like patterning. Development (Cambridge), 2017, 144, 4298-4312.	1.2	124
30	An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress. Current Biology, 2017, 27, 2260-2270.e5.	1.8	37
31	Quantitative modelling of epithelial morphogenesis: integrating cell mechanics and molecular dynamics. Seminars in Cell and Developmental Biology, 2017, 67, 153-160.	2.3	17
32	Tension regulates myosin dynamics during <i>Drosophila</i> embryonic wound repair. Development (Cambridge), 2017, 144, e1.2-e1.2.	1,2	0
33	Automated cell tracking identifies mechanically oriented cell divisions during Drosophila axis elongation. Journal of Cell Science, 2017, 130, e1.2-e1.2.	1.2	0
34	Basal Cell-Extracellular Matrix Adhesion Regulates Force Transmission during Tissue Morphogenesis. Developmental Cell, 2016, 39, 611-625.	3.1	52
35	Local mechanical forces promote polarized junctional assembly and axis elongation in Drosophila. ELife, 2016, 5, .	2.8	90
36	Laser ablation to investigate cell and tissue mechanics in vivo. , 2015, , 128-147.		12

#	Article	IF	CITATIONS
37	An in vitro model of tissue boundary formation for dissecting the contribution of different boundary forming mechanisms. Integrative Biology (United Kingdom), 2015, 7, 298-312.	0.6	11
38	Anisotropic stress orients remodelling of mammalian limb bud ectoderm. Nature Cell Biology, 2015, 17, 569-579.	4.6	102
39	A biomechanical model for cell polarization and intercalation during <i>Drosophila </i> germband extension. Physical Biology, 2015, 12, 056011.	0.8	29
40	Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair. Journal of Cell Biology, 2015, 210, 801-816.	2.3	69
41	Quantitative Image Analysis of Cell Behavior and Molecular Dynamics During Tissue Morphogenesis. Methods in Molecular Biology, 2015, 1189, 99-113.	0.4	28
42	A force to be reckoned with. Nature Physics, 2014, 10, 626-627.	6.5	0
43	Automated multidimensional image analysis reveals a role for Abl in embryonic wound repair. Development (Cambridge), 2014, 141, 2901-2911.	1.2	36
44	Gastrulation: Cell Polarity Comes Full Circle. Current Biology, 2013, 23, R845-R848.	1.8	2
45	Wounded cells drive rapid epidermal repair in the early Drosophila embryo. Molecular Biology of the Cell, 2013, 24, 3227-3237.	0.9	62
46	Feeling the Squeeze: Live-Cell Extrusion Limits Cell Density in Epithelia. Cell, 2012, 149, 965-967.	13.5	10
47	Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells. Physical Biology, 2011, 8, 045005.	0.8	171
48	3D reconstruction of histological sections: Application to mammary gland tissue. Microscopy Research and Technique, 2010, 73, 1019-1029.	1.2	565
49	Integration of contractile forces during tissue invagination. Journal of Cell Biology, 2010, 188, 735-749.	2.3	495
50	Rho-Kinase Directs Bazooka/Par-3 Planar Polarity during Drosophila Axis Elongation. Developmental Cell, 2010, 19, 377-388.	3.1	244
51	In Situ Analysis of Cell Populations: Long-Term Label-Retaining Cells. Methods in Molecular Biology, 2010, 621, 1-28.	0.4	8
52	Limiting-Dilution Transplantation Assays in Mammary Stem Cell Studies. Methods in Molecular Biology, 2010, 621, 29-47.	0.4	18
53	Use of Stem Cell Markers in Dissociated Mammary Populations. Methods in Molecular Biology, 2010, 621, 49-55.	0.4	8
54	Q&A: Quantitative approaches to planar polarity and tissue organization. Journal of Biology, 2009, 8, 103.	2.7	9

#	Article	IF	CITATIONS
55	Myosin II Dynamics Are Regulated by Tension in Intercalating Cells. Developmental Cell, 2009, 17, 736-743.	3.1	581
56	Mapping mammary gland architecture using multi-scale in situ analysis. Integrative Biology (United) Tj ETQq0 0	O rgBT /O	verlock 10 Tf ! 21
57	Cell Mechanics and Feedback Regulation of Actomyosin Networks. Science Signaling, 2009, 2, pe78.	1.6	39
58	Epithelial Organization: May the Force Be with You. Current Biology, 2008, 18, R163-R165.	1.8	8
59	High-throughput analysis of multispectral images of breast cancer tissue. IEEE Transactions on Image Processing, 2006, 15, 2259-2268.	6.0	53
60	Quantitative in vivo microscopy: the return from the  omics'. Current Opinion in Biotechnology, 2006, 17, 501-510.	3.3	11
61	A tool for the quantitative spatial analysis of complex cellular systems. IEEE Transactions on Image Processing, 2005, 14, 1300-1313.	6.0	14
62	Automatic segmentation of histological structures in mammary gland tissue sections. Journal of Biomedical Optics, 2004, 9, 444.	1.4	21
63	A tool for the quantitative spatial analysis of mammary gland epithelium. , 2004, 2004, 1549-52.		1
64	Quantitative Image Analysis in Mammary Gland Biology. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 343-359.	1.0	12
65	Automatic segementation of histological structures in normal and neoplastic mammary gland tissue sections., 2003,,.		0
66	System for combined three-dimensional morphological and molecular analysis of thick tissue specimens. Microscopy Research and Technique, 2002, 59, 522-530.	1,2	40
67	A System for Computer-based Reconstruction of 3-Dimensional Structures from Serial Tissue Sections: an Application to the Study of Normal and Neoplastic Mammary Gland Biology. Microscopy and Microanalysis, 2001, 7, 964-965.	0.2	0