Sebastian Z Oener

List of Publications by Citations

Source: https://exaly.com/author-pdf/7549558/sebastian-z-oener-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

760 26 17 22 h-index g-index citations papers 26 4.88 16.4 1,092 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
22	Accelerating water dissociation in bipolar membranes and for electrocatalysis. <i>Science</i> , 2020 , 369, 1099-	-3,3,0,3	111
21	Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. <i>ACS Catalysis</i> , 2019 , 9, 7-15	13.1	89
20	Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. <i>Nature Materials</i> , 2020 , 19, 69-7	′6 7	53
19	Ionic Processes in Water Electrolysis: The Role of Ion-Selective Membranes. <i>ACS Energy Letters</i> , 2017 , 2, 2625-2634	20.1	49
18	Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon. <i>Journal of Applied Physics</i> , 2010 , 108, 063528	2.5	47
17	Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical Conductivity, and Semiconductor Morphology. <i>ACS Energy Letters</i> , 2018 , 3, 961-969	20.1	38
16	Controlling crystallization to imprint nanophotonic structures into halide perovskites using soft lithography. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8301-8307	7.1	37
15	Quantifying losses and thermodynamic limits in nanophotonic solar cells. <i>Nature Nanotechnology</i> , 2016 , 11, 1071-1075	28.7	36
14	Selectivity Control of Cu Nanocrystals in a Gas-Fed Flow Cell through CO Pulsed Electroreduction. Journal of the American Chemical Society, 2021 , 143, 7578-7587	16.4	35
13	Perovskite Nanowire Extrusion. <i>Nano Letters</i> , 2017 , 17, 6557-6563	11.5	33
12	Low-Cost Approaches to IIII Semiconductor Growth for Photovoltaic Applications. <i>ACS Energy Letters</i> , 2017 , 2, 2270-2282	20.1	33
11	Membrane Electrolyzers for Impure-Water Splitting. <i>Joule</i> , 2020 , 4, 2549-2561	27.8	27
10	Potentially Confusing: Potentials in Electrochemistry. ACS Energy Letters, 2021, 6, 261-266	20.1	25
9	Charge carrier-selective contacts for nanowire solar cells. <i>Nature Communications</i> , 2018 , 9, 3248	17.4	22
8	Metal-Insulator-Semiconductor Nanowire Network Solar Cells. <i>Nano Letters</i> , 2016 , 16, 3689-95	11.5	22
7	Thin Cation-Exchange Layers Enable High-Current-Density Bipolar Membrane Electrolyzers via Improved Water Transport. <i>ACS Energy Letters</i> , 2021 , 6, 1-8	20.1	21
6	Integrated Reference Electrodes in Anion-Exchange-Membrane Electrolyzers: Impact of Stainless-Steel Gas-Diffusion Layers and Internal Mechanical Pressure. <i>ACS Energy Letters</i> , 2021 , 6, 305-2	3 ² 2 ^{.1}	19

LIST OF PUBLICATIONS

5	Au-Cu2O core-shell nanowire photovoltaics. <i>Applied Physics Letters</i> , 2015 , 106, 023501	3.4	16	
4	Performance and Durability of Pure-Water-Fed Anion Exchange Membrane Electrolyzers Using Baseline Materials and Operation. <i>ACS Applied Materials & Description of State Communication and Commu</i>	9.5	14	
3	Monocrystalline Nanopatterns Made by Nanocube Assembly and Epitaxy. <i>Advanced Materials</i> , 2017 , 29, 1701064	24	12	
2	Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1995-2005	5.8	12	
1	Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 723-728	4.6	5	