Nicholas C Carpita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549507/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Lack of xyloglucan in the cell walls of the Arabidopsis <i>xxt1/xxt2</i> mutant results in specific increases in homogalacturonan and glucomannan. Plant Journal, 2022, 110, 212-227.	2.8	13
2	Pectin-associated mannans and xylans play distinct roles in cell-cell adhesion in pine and poplar wood. Industrial Crops and Products, 2022, 184, 115054.	2.5	1
3	COMPILE: a GWAS computational pipeline for gene discovery in complex genomes. BMC Plant Biology, 2022, 22, .	1.6	2
4	A TEMPO-catalyzed oxidation–reduction method to probe surface and anhydrous crystalline-core domains of cellulose microfibril bundles. Cellulose, 2021, 28, 5305-5319.	2.4	4
5	Maize <i>Brittle Stalk2-Like3</i> , encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. Plant Cell, 2021, 33, 3348-3366.	3.1	17
6	Rhamnogalacturonanâ€l is a determinant of cell–cell adhesion in poplar wood. Plant Biotechnology Journal, 2020, 18, 1027-1040.	4.1	24
7	Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemistry, 2020, 295, 15144-15157.	1.6	48
8	Sustainable production of ammonia fertilizers from biomass. Biofuels, Bioproducts and Biorefining, 2020, 14, 725-733.	1.9	10
9	Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. Biotechnology for Biofuels, 2019, 12, 171.	6.2	37
10	Linkage structure of cell-wall polysaccharides from three duckweed species. Carbohydrate Polymers, 2019, 223, 115119.	5.1	23
11	Evolution of the Cell Wall Gene Families of Grasses. Frontiers in Plant Science, 2019, 10, 1205.	1.7	23
12	Expression profiles of cell-wall related genes vary broadly between two common maize inbreds during stem development. BMC Genomics, 2019, 20, 785.	1.2	8
13	Differential distributions of trafficking and signaling proteins of the maize ER-Golgi apparatus. Plant Signaling and Behavior, 2019, 14, 1672513.	1.2	2
14	Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytologist, 2019, 224, 274-290.	3.5	64
15	Migration and proliferation of cancer cells in culture are differentially affected by molecular size of modified citrus pectin. Carbohydrate Polymers, 2019, 211, 141-151.	5.1	33
16	Glycome and Proteome Components of Golgi Membranes Are Common between Two Angiosperms with Distinct Cell-Wall Structures. Plant Cell, 2019, 31, 1094-1112.	3.1	35
17	Two banana cultivars differ in composition of potentially immunomodulatory mannan and arabinogalactan. Carbohydrate Polymers, 2017, 164, 31-41.	5.1	19
18	Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance. Plant Physiology, 2017, 173, 482-494.	2.3	27

#	Article	IF	CITATIONS
19	Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Current Biology, 2017, 27, 2248-2259.e4.	1.8	55
20	Ripening-induced chemical modifications of papaya pectin inhibit cancer cell proliferation. Scientific Reports, 2017, 7, 16564.	1.6	47
21	Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid. Biotechnology for Biofuels, 2017, 10, 310.	6.2	23
22	Cell wall targeted <i>in planta</i> iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. Plant Biotechnology Journal, 2016, 14, 1998-2009.	4.1	19
23	A benzoate-activated promoter from Aspergillus niger and regulation of its activity. Applied Microbiology and Biotechnology, 2016, 100, 5479-5489.	1.7	13
24	The Cell Wall Arabinose-Deficient <i>Arabidopsis thaliana</i> Mutant <i>murus5</i> Encodes a Defective Allele of <i>REVERSIBLY GLYCOSYLATED POLYPEPTIDE2</i> Plant Physiology, 2016, 171, 1905-1920.	2.3	5
25	Polysaccharide composition of raw and cooked chayote (Sechium edule Sw.) fruits and tuberous roots. Carbohydrate Polymers, 2015, 130, 155-165.	5.1	23
26	Tandem mass spectrometric characterization of the conversion of xylose to furfural. Biomass and Bioenergy, 2015, 74, 1-5.	2.9	10
27	Plants and bioenergy. Journal of Experimental Botany, 2015, 66, 4093-4095.	2.4	6
28	Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property: Fig. 1 Journal of Experimental Botany, 2015, 66, 4109-4118.	2.4	197
29	Characterizing visible and invisible cell wall mutant phenotypes. Journal of Experimental Botany, 2015, 66, 4145-4163.	2.4	23
30	Tailoring Plant Cell Wall Composition and Architecture for Conversion to Liquid Hydrocarbon Biofuels. , 2015, , 63-82.		2
31	Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population. Plant Physiology, 2014, 165, 1475-1487.	2.3	51
32	The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers. Plant Cell, 2014, 26, 2996-3009.	3.1	61
33	Validation of PyMBMS as a High-throughput Screen for Lignin Abundance in Lignocellulosic Biomass of Grasses. Bioenergy Research, 2014, 7, 899-908.	2.2	19
34	Structural alteration of cell wall pectins accompanies pea development in response to cold. Phytochemistry, 2014, 104, 37-47.	1.4	75
35	Towards Redesigning Cellulose Biosynthesis for Improved Bioenergy Feedstocks. , 2014, , 183-193.		1
36	Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 72-79.	0.8	30

#	Article	IF	CITATIONS
37	Analysis of xyloglucans by ambient chloride attachment ionization tandem mass spectrometry. Carbohydrate Polymers, 2013, 98, 1203-1213.	5.1	21
38	Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Current Opinion in Biotechnology, 2012, 23, 330-337.	3.3	79
39	Envisioning the transition to a nextâ€generation biofuels industry in the US Midwest. Biofuels, Bioproducts and Biorefining, 2012, 6, 376-386.	1.9	26
40	Alterations in cell-wall glycosyl linkage structure of Arabidopsis murus mutants. Carbohydrate Polymers, 2012, 89, 331-339.	5.1	15
41	Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and Other (1→4)-β- <scp>d</scp> -Glycans. Plant Physiology, 2011, 155, 171-184.	2.3	126
42	Cell wall polysaccharides from fern leaves: Evidence for a mannan-rich Type III cell wall in Adiantum raddianum. Phytochemistry, 2011, 72, 2352-2360.	1.4	63
43	Cell wall polysaccharides from cell suspension cultures of the Atlantic Forest tree Rudgea jasminoides (Rubiaceae). Trees - Structure and Function, 2010, 24, 713-722.	0.9	2
44	The Maize Mixed-Linkage (1→3),(1→4)- <i>β</i> - <scp>d</scp> -Glucan Polysaccharide Is Synthesized at the Go Membrane Â. Plant Physiology, 2010, 153, 1362-1371.	lgi _{2.3}	51
45	Genetic Resources for Maize Cell Wall Biology Â. Plant Physiology, 2009, 151, 1703-1728.	2.3	152
46	The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457, 551-556.	13.7	2,642
47	The <i>thanatos</i> mutation in <i>Arabidopsis thaliana </i> cellulose synthase 3 (<i>AtCesA3</i>) has a dominantâ€negative effect on cellulose synthesis and plant growth. New Phytologist, 2009, 184, 114-126.	3.5	45
48	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	6.0	3,612
49	Designing the deconstruction of plant cell walls. Current Opinion in Plant Biology, 2008, 11, 314-320.	3.5	186
50	Maize and sorghum: genetic resources for bioenergy grasses. Trends in Plant Science, 2008, 13, 415-420.	4.3	172
51	Novel Rhamnogalacturonan I and Arabinoxylan Polysaccharides of Flax Seed Mucilage. Plant Physiology, 2008, 148, 132-141.	2.3	170
52	Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20534-20539.	3.3	91
53	Comparative Genomics in Switchgrass Using 61,585 Highâ€Quality Expressed Sequence Tags. Plant Genome, 2008, 1, .	1.6	57
54	Neural Network Analyses of Infrared Spectra for Classifying Cell Wall Architectures. Plant Physiology, 2007, 143, 1314-1326.	2.3	76

#	Article	IF	CITATIONS
55	Maize <i>Brittle stalk2</i> Encodes a COBRA-Like Protein Expressed in Early Organ Development But Required for Tissue Flexibility at Maturity. Plant Physiology, 2007, 145, 1444-1459.	2.3	116
56	Molecular Breeding to Enhance Ethanol Production from Corn and Sorghum Stover. Crop Science, 2007, 47, S-142.	0.8	154
57	Fine structure of a mixed-oligomer storage xyloglucan from seeds of Hymenaea courbaril. Carbohydrate Polymers, 2006, 66, 444-454.	5.1	43
58	Genomics of plant cell wall biogenesis. Planta, 2005, 221, 747-751.	1.6	90
59	Loss of Highly Branched Arabinans and Debranching of Rhamnogalacturonan I Accompany Loss of Firm Texture and Cell Separation during Prolonged Storage of Apple. Plant Physiology, 2004, 135, 1305-1313.	2.3	131
60	The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth. Plant Physiology, 2004, 134, 443-451.	2.3	113
61	Topology of the Maize Mixed Linkage (1→3),(1→4)-β-D-Glucan Synthase at the Golgi Membrane. Plant Physiology, 2004, 134, 758-768.	2.3	42
62	Mixed Linkage (1→3),(1→4)-β-d-Glucans of Grasses. Cereal Chemistry, 2004, 81, 115-127.	1.1	140
63	Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Molecular Biology, 2003, 53, 687-701.	2.0	61
64	The MUR3 Gene of Arabidopsis Encodes a Xyloglucan Galactosyltransferase That Is Evolutionarily Related to Animal Exostosins. Plant Cell, 2003, 15, 1662-1670.	3.1	304
65	The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3340-3345.	3.3	256
66	Title is missing!. Plant and Soil, 2002, 247, 71-80.	1.8	39
67	Cell Wall Architecture of the Elongating Maize Coleoptile. Plant Physiology, 2001, 127, 551-565.	2.3	29
68	Insight into multi-site mechanisms of glycosyl transfer in (1→4)β-d-glycans provided by the cereal mixed-linkage (1→3),(1→4)β-d-glucan synthase. Phytochemistry, 2001, 57, 1045-1053.	1.4	37
69	Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry, 2001, 57, 811-821.	1.4	83
70	Title is missing!. , 2001, 47, 145-160.		98
71	Cell Wall Architecture of the Elongating Maize Coleoptile. Plant Physiology, 2001, 127, 551-565.	2.3	263
72	COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes and Development, 2001, 15, 1115-1127.	2.7	335

#	Article	IF	CITATIONS
73	<i>MYB61</i> Is Required for Mucilage Deposition and Extrusion in the Arabidopsis Seed Coat. Plant Cell, 2001, 13, 2777-2791.	3.1	253
74	Cell Wall and Membrane-Associated Exo-β-d-Glucanases from Developing Maize Seedlings. Plant Physiology, 2000, 123, 471-486.	2.3	93
75	The Mechanism of Synthesis of a Mixed-Linkage (1→3),(1→4)β-d-Clucan in Maize. Evidence for Multiple Sites of Glucosyl Transfer in the Synthase Complex1. Plant Physiology, 1999, 120, 1105-1116.	2.3	113
76	A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant Journal, 1998, 16, 385-392.	2.8	202
77	STRUCTURE AND BIOGENESIS OF THE CELL WALLS OF GRASSES. Annual Review of Plant Biology, 1996, 47, 445-476.	14.2	753
78	The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. Plant Journal, 1995, 7, 633-648.	2.8	72
79	Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells from Zinnia elegans into tracheary elements. Plant Journal, 1995, 8, 891-906.	2.8	70
80	Changes in pectin structure and localization during the growth of unadapted and NaCl-adapted tobacco cells. Plant Journal, 1994, 5, 773-785.	2.8	110
81	Enrichment of vitronectin- and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. Plant Journal, 1993, 3, 637-646.	2.8	106
82	Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 1993, 3, 1-30.	2.8	2,881
83	Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles. Plant Physiology, 1992, 98, 646-653.	2.3	317
84	Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. FEBS Journal, 1992, 209, 961-969.	0.2	71
85	Clean-up procedure for partially methylated alditol acetate derivatives of polysaccharides. Journal of Chromatography A, 1991, 587, 284-287.	1.8	16
86	Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 1991, 197, 157-162.	1.1	1,182
87	Tracing Cell Wall Biogenesis in Intact Cells and Plants. Plant Physiology, 1991, 97, 551-561.	2.3	204
88	Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Analytical Biochemistry, 1987, 161, 132-139.	1.1	76
89	A highly substituted glucuronoarabinoxylan from developing maize coleoptiles. Carbohydrate Research, 1986, 146, 129-140.	1.1	47
90	Incorporation of Proline and Aromatic Amino Acids into Cell Walls of Maize Coleoptiles. Plant Physiology, 1986, 80, 660-666.	2.3	46

#	Article	IF	CITATIONS
91	Cell Wall Development in Maize Coleoptiles. Plant Physiology, 1984, 76, 205-212.	2.3	150
92	Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry, 1984, 23, 1089-1093.	1.4	81
93	Hemicellulosic Polymers of Cell Walls of Zea Coleoptiles. Plant Physiology, 1983, 72, 515-521.	2.3	78
94	Promotion of hypocotyl elongation in loblolly pine (Pinus taeda L.) by indole-3-acetic acid. Physiologia Plantarum, 1982, 55, 149-154.	2.6	11
95	Growth physics and water relations of red-light-induced germination in lettuce seeds. Planta, 1981, 152, 131-136.	1.6	18
96	Protection of Cellulose Synthesis in Detached Cotton Fibers by Polyethylene Glycol. Plant Physiology, 1980, 66, 911-916.	2.3	39