Himanshu Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549110/publications.pdf

Version: 2024-02-01

471061 525886 26 868 17 27 citations h-index g-index papers 30 30 30 1089 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nature Nanotechnology, 2016, 11, 1112-1119.	15.6	142
2	Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 2020, 15, 73-79.	15.6	111
3	Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Research, 2019, 47, 11441-11451.	6.5	60
4	Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. Nature Nanotechnology, 2021, 16, 911-917.	15.6	54
5	Polyhydrazideâ€Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angewandte Chemie - International Edition, 2020, 59, 4806-4813.	7.2	46
6	Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures. Journal of the American Chemical Society, 2021, 143, 7358-7367.	6.6	44
7	Chiral Systems Made from DNA. Advanced Science, 2021, 8, 2003113.	5.6	42
8	Synthetic Macrocycle Nanopore for Potassium-Selective Transmembrane Transport. Journal of the American Chemical Society, 2021, 143, 15975-15983.	6.6	33
9	Structure, stability and elasticity of DNA nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 1424-1434.	1.3	30
10	Dynamic Interactions between Lipid-Tethered DNA and Phospholipid Membranes. Langmuir, 2018, 34, 15084-15092.	1.6	30
11	Nanoscale Structure and Elasticity of Pillared DNA Nanotubes. ACS Nano, 2016, 10, 7780-7791.	7.3	28
12	Hydrophobic Interactions between DNA Duplexes and Synthetic and Biological Membranes. Journal of the American Chemical Society, 2021, 143, 8305-8313.	6.6	26
13	High-Fidelity Capture, Threading, and Infinite-Depth Sequencing of Single DNA Molecules with a Double-Nanopore System. ACS Nano, 2020, 14, 15566-15576.	7.3	24
14	DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity. Nano Letters, 2021, 21, 8634-8641.	4.5	22
15	Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors. Journal of the American Chemical Society, 2020, 142, 1680-1685.	6.6	19
16	Atomic structures of RNA nanotubes and their comparison with DNA nanotubes. Nanoscale, 2019, 11, 14863-14878.	2.8	18
17	Tuning the Stability of DNA Nanotubes with Salt. Journal of Physical Chemistry C, 2019, 123, 9461-9470.	1.5	18
18	Determining the In-Plane Orientation and Binding Mode of Single Fluorescent Dyes in DNA Origami Structures. ACS Nano, 2021, 15, 5109-5117.	7.3	18

#	Article	lF	CITATION
19	Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes. Nucleic Acids Research, 2018, 46, 2234-2242.	6.5	16
20	Effect of Temperature and Hydrophilic Ratio on the Structure of Poly(<i>N</i> -vinylcaprolactam)- <i>block</i> -poly(dimethylsiloxane)- <i>block</i> -poly(<i>N</i> -vinylcaprolactam) Polymersomes. ACS Applied Polymer Materials, 2019, 1, 722-736.	2.0	15
21	Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations. Nanoscale, 2017, 9, 4467-4477.	2.8	14
22	DNA Translocation through Hybrid Bilayer Nanopores. Journal of Physical Chemistry C, 2019, 123, 11908-11916.	1.5	14
23	Tailoring Interleaflet Lipid Transfer with a DNA-based Synthetic Enzyme. Nano Letters, 2020, 20, 4306-4311.	4.5	13
24	Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. Nano Letters, 2022, 22, 4831-4838.	4.5	12
25	Polyhydrazideâ€Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angewandte Chemie, 2020, 132, 4836-4843.	1.6	11
26	Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure. Nano Letters, 2021, 21, 9789-9796.	4.5	5