
Tyron Louw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 50, 55-64.	3.7	285
2	Acceptance of Automated Road Transport Systems (ARTS): An Adaptation of the UTAUT Model. Transportation Research Procedia, 2016, 14, 2217-2226.	1.5	197
3	Designing the interaction of automated vehicles with other traffic participants: design considerations based on human needs and expectations. Cognition, Technology and Work, 2019, 21, 69-85.	3.0	150
4	What externally presented information do VRUs require when interacting with fully Automated Road Transport Systems in shared space?. Accident Analysis and Prevention, 2018, 118, 244-252.	5.7	139
5	The "Out-of-the-Loop―concept in automated driving: proposed definition, measures and implications. Cognition, Technology and Work, 2019, 21, 87-98.	3.0	134
6	Are you in the loop? Using gaze dispersion to understand driver visual attention during vehicle automation. Transportation Research Part C: Emerging Technologies, 2017, 76, 35-50.	7.6	130
7	Using the UTAUT2 model to explain public acceptance of conditionally automated (L3) cars: A questionnaire study among 9,118 car drivers from eight European countries. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74, 280-297.	3.7	106
8	Coming back into the loop: Drivers' perceptual-motor performance in critical events after automated driving. Accident Analysis and Prevention, 2017, 108, 9-18.	5.7	84
9	Understanding interactions between Automated Road Transport Systems and other road users: A video analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66, 196-213.	3.7	63
10	Were they in the loop during automated driving? Links between visual attention and crash potential. Injury Prevention, 2017, 23, 281-286.	2.4	60
11	Engaging with Highly Automated Driving: To be or Not to be in the Loop?. , 2015, , .		56
12	Engaging in NDRTs affects drivers' responses and glance patterns after silent automation failures. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62, 870-882.	3.7	48
13	Sustained sensorimotor control as intermittent decisions about prediction errors: computational framework and application to ground vehicle steering. Biological Cybernetics, 2018, 112, 181-207.	1.3	45
14	The effect of varying levels of vehicle automation on drivers' lane changing behaviour. PLoS ONE, 2018, 13, e0192190.	2.5	24
15	Physiological indicators of driver workload during car-following scenarios and takeovers in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 87, 149-163.	3.7	17
16	The effect of motor control requirements on drivers' eye-gaze pattern during automated driving. Accident Analysis and Prevention, 2020, 148, 105788.	5.7	15
17	Managing Big Data for Addressing Research Questions in a Collaborative Project on Automated Driving Impact Assessment. Sensors, 2020, 20, 6773.	3.8	11
18	Validation of driving behaviour as a step towards the investigation of Connected and Automated Vehicles by means of driving simulators. , 2017, , .		10

TYRON LOUW

#	Article	IF	CITATIONS
19	Why would people want to travel more with automated cars?. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89, 143-154.	3.7	10
20	Gaze-based Intention Anticipation over Driving Manoeuvres in Semi-Autonomous Vehicles. , 2019, , .		9
21	Are multimodal travellers going to abandon sustainable travel for L3 automated vehicles?. Transportation Research Interdisciplinary Perspectives, 2021, 10, 100380.	2.7	9
22	Do drivers change their manual car-following behaviour after automated car-following?. Cognition, Technology and Work, 2021, 23, 669-683.	3.0	9
23	Measuring Drivers' Physiological Response to Different Vehicle Controllers in Highly Automated Driving (HAD): Opportunities for Establishing Real-Time Values of Driver Discomfort. Information (Switzerland), 2020, 11, 390.	2.9	8
24	Transitions Between Highly Automated and Longitudinally Assisted Driving: The Role of the Initiator in the Fight for Authority. Human Factors, 2022, 64, 601-612.	3.5	8
25	Predicting takeover response to silent automated vehicle failures. PLoS ONE, 2020, 15, e0242825.	2.5	8
26	Drivers' Intentions to Use Different Functionalities of Conditionally Automated Cars: A Survey Study of 18,631 Drivers from 17 Countries. International Journal of Environmental Research and Public Health, 2021, 18, 12054.	2.6	6
27	Cognitive Load During Automation Affects Gaze Behaviours and Transitions to Manual Steering Control. , 0, , .		4
28	Handing control back to drivers: Exploring the effects of handover procedure during transitions from Highly Automated Driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84, 9-20.	3.7	4
29	Don't Worry, I'm in Control! Is Users' Trust in Automated Driving Different When Using a Continuous Ambient Light HMI Compared to an Auditory HMI?. , 2021, , .		3
30	The effect of inconsistent steering guidance during transitions from Highly Automated Driving. Accident Analysis and Prevention, 2022, 167, 106572.	5.7	3
31	Profiling the Enthusiastic, Neutral, and Sceptical Users of Conditionally Automated Cars in 17 Countries: A Questionnaire Study. Journal of Advanced Transportation, 2022, 2022, 1-22.	1.7	3
32	Applying participatory design to symbols for SAE level 2 automated driving systems. , 2019, , .		2
33	Using Markov Chains to Understand the Sequence of Drivers' Gaze Transitions During Lane-Changes in Automated Driving. , 0, , .		2
34	When terminology hinders research: the colloquialisms of transitions of control in automated driving. Cognition, Technology and Work, 2022, 24, 509-520.	3.0	2
35	Predicting takeover response to silent automated vehicle failures. , 2020, 15, e0242825.		0
36	Predicting takeover response to silent automated vehicle failures. , 2020, 15, e0242825.		0

#	Article	IF	CITATIONS
37	Predicting takeover response to silent automated vehicle failures. , 2020, 15, e0242825.		0
38	Predicting takeover response to silent automated vehicle failures. , 2020, 15, e0242825.		0

4