John L Orrock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7548743/publications.pdf

Version: 2024-02-01

66234 32761 11,099 136 42 100 citations h-index g-index papers 136 136 136 13480 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 2015, 1, e1500052.	4.7	2,541
2	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	13.7	669
3	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	13.7	564
4	Predator-prey na \tilde{A} -vet \tilde{A} $\hat{\mathbb{Q}}$, antipredator behavior, and the ecology of predator invasions. Oikos, 2010, 119, 610-621.	1.2	561
5	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	6.0	463
6	Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12923-12926.	3.3	449
7	REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATOR–PREY INTERACTIONS. Ecology, 2008, 89, 2416-2425.	1.5	401
8	Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 2014, 5, 65-73.	2.2	353
9	PREDATOR HUNTING MODE AND HABITAT DOMAIN ALTER NONCONSUMPTIVE EFFECTS IN PREDATOR–PREY INTERACTIONS. Ecology, 2007, 88, 2744-2751.	1.5	326
10	Corridors Increase Plant Species Richness at Large Scales. Science, 2006, 313, 1284-1286.	6.0	273
11	Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecology and Biogeography, 2011, 20, 209-217.	2.7	163
12	The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19078-19083.	3.3	150
13	APPARENT COMPETITION WITH AN EXOTIC PLANT REDUCES NATIVE PLANT ESTABLISHMENT. Ecology, 2008, 89, 1168-1174.	1.5	144
14	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	1.5	143
15	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	5.8	143
16	Local community size mediates ecological drift and competition in metacommunities. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2185-2191.	1.2	133
17	Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18523-18527.	3.3	129
18	How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3484-3489.	3.3	127

#	Article	IF	Citations
19	Seed predation, not seed dispersal, explains the landscape-level abundance of an early-successional plant. Journal of Ecology, 2006, 94, 838-845.	1.9	110
20	Transgenerational Plasticity in Human-Altered Environments. Trends in Ecology and Evolution, 2020, 35, 115-124.	4.2	105
21	The cost of safety: Refuges increase the impact of predation risk in aquatic systems. Ecology, 2013, 94, 573-579.	1.5	102
22	Strong legacy of agricultural land use on soils and understory plant communities in longleaf pine woodlands. Forest Ecology and Management, 2013, 310, 944-955.	1.4	93
23	Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science, 2019, 365, 1478-1480.	6.0	92
24	CONSUMPTIVE AND NONCONSUMPTIVE EFFECTS OF PREDATORS ON METACOMMUNITIES OF COMPETING PREY. Ecology, 2008, 89, 2426-2435.	1.5	83
25	SPATIAL ECOLOGY OF PREDATOR–PREY INTERACTIONS: CORRIDORS AND PATCH SHAPE INFLUENCE SEED PREDATION. Ecology, 2003, 84, 2589-2599.	1.5	81
26	Refugeâ€mediated apparent competition in plant–consumer interactions. Ecology Letters, 2010, 13, 11-20.	3.0	78
27	Potential Negative Ecological Effects of Corridors. Conservation Biology, 2014, 28, 1178-1187.	2.4	76
28	Changes in Community Size Affect the Outcome of Competition. American Naturalist, 2005, 166, 107-111.	1.0	73
29	How the type of anthropogenic change alters the consequences of ecological traps. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2546-2552.	1.2	71
30	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	4.2	70
31	Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology, 2014, 95, 2033-2039.	1.5	69
32	Density of intraspecific competitors determines the occurrence and benefits of accelerated germination. American Journal of Botany, 2010, 97, 694-699.	0.8	68
33	Predator–Prey Interactions in the Anthropocene: Reconciling Multiple Aspects of Novelty. Trends in Ecology and Evolution, 2019, 34, 616-627.	4.2	67
34	Invasive plant species alters consumer behavior by providing refuge from predation. Oecologia, 2011, 166, 649-657.	0.9	63
35	Temperature and Cloud Cover, but Not Predator Urine, Affect Winter Foraging of Mice. Ethology, 2009, 115, 641-648.	0.5	58
36	The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere, 2012, 3, 1-27.	1.0	58

#	Article	IF	Citations
37	Invasive shrub alters native forest amphibian communities. Biological Conservation, 2011, 144, 2597-2601.	1.9	55
38	Therapeutic Efficacy of Bone Marrow Transplant, Intracranial AAV-mediated Gene Therapy, or Both in the Mouse Model of MPS IIIB. Molecular Therapy, 2010, 18, 873-880.	3.7	54
39	Error management in plant allocation to herbivore defense. Trends in Ecology and Evolution, 2015, 30, 441-445.	4.2	51
40	Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk. Oecologia, 2004, 140, 662-667.	0.9	48
41	CORRIDORS CAUSE DIFFERENTIAL SEED PREDATION. , 2005, 15, 793-798.		47
42	Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity. Journal of Vegetation Science, 2014, 25, 1438-1449.	1.1	47
43	Dispersal and establishment limitation slows plant community recovery in postâ€agricultural longleaf pine savannas. Journal of Applied Ecology, 2017, 54, 1100-1109.	1.9	46
44	Biogeographic and Ecological Regulation of Disease: Prevalence of Sin Nombre Virus in Island Mice Is Related to Island Area, Precipitation, and Predator Richness. American Naturalist, 2011, 177, 691-697.	1.0	43
45	Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species. Ecology, 2015, 96, 1052-1061.	1.5	43
46	Native Consumers and Seed Limitation Constrain the Restoration of a Native Perennial Grass in Exotic Habitats. Restoration Ecology, 2009, 17, 148-157.	1.4	42
47	Connectivity from a different perspective: comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology, 2016, 97, 1274-1282.	1.5	41
48	Climatic variation and seed persistence: freeze–thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Oecologia, 2015, 179, 609-616.	0.9	40
49	Multiple drivers of apparent competition reduce re-establishment of a native plant in invaded habitats. Oikos, 2010, 119, 101-108.	1.2	38
50	Neighbor palatability generates associational effects by altering herbivore foraging behavior. Ecology, 2016, 97, 2103-2111.	1.5	38
51	Predator Effects in Predator-Free Space: the Remote Effects of Predators on Prey. Open Ecology Journal, 2010, 3, 22-30.	2.0	37
52	PATCH SHAPE, CONNECTIVITY, AND FORAGING BY OLDFIELD MICE (PEROMYSCUS POLIONOTUS). Journal of Mammalogy, 2005, 86, 569-575.	0.6	34
53	Measuring edge contrast using biotic criteria helps define edge effects on the density of an invasive plant. Landscape Ecology, 2010, 25, 69-78.	1.9	34
54	Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities. PLoS ONE, 2014, 9, e86604.	1.1	34

#	Article	IF	CITATIONS
55	Historic land use influences contemporary establishment of invasive plant species. Oecologia, 2013, 172, 1147-1157.	0.9	33
56	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	2.7	32
57	Error management theory and the adaptive significance of transgenerational maternalâ€stress effects on offspring phenotype. Ecology and Evolution, 2018, 8, 6473-6482.	0.8	32
58	CORRIDORS AND OLFACTORY PREDATOR CUES AFFECT SMALL MAMMAL BEHAVIOR. Journal of Mammalogy, 2005, 86, 662-669.	0.6	31
59	Spatial interplay of plant competition and consumer foraging mediate plant coexistence and drive the invasion ratchet. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3307-3315.	1.2	30
60	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	6.0	30
61	Spicing up restoration: can chili peppers improve restoration seeding by reducing seed predation?. Restoration Ecology, 2019, 27, 254-260.	1.4	30
62	Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Landscape Ecology, 2011, 26, 1361-1372.	1.9	29
63	Landâ€use legacies and present fire regimes interact to mediate herbivory by altering the neighboring plant community. Oikos, 2015, 124, 497-506.	1.2	29
64	When the Ghost of Predation has Passed: Do Rodents from Islands with and without Fox Predators Exhibit Aversion to Fox Cues?. Ethology, 2010, 116, 338-345.	0.5	27
65	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	1.1	27
66	Landâ€use history alters contemporary insect herbivore community composition and decouples plant–herbivore relationships. Journal of Animal Ecology, 2015, 84, 745-754.	1.3	26
67	Invasive exotic shrub modifies a classic animalâ€habitat relationship and alters patterns of vertebrate seed predation. Ecology, 2017, 98, 321-327.	1.5	26
68	An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140391.	1.2	25
69	Advances in population ecology and species interactions in mammals. Journal of Mammalogy, 2019, 100, 965-1007.	0.6	25
70	Effects of longâ€ŧerm consumer manipulations on invasion in oak savanna communities. Ecology, 2009, 90, 1356-1365.	1.5	24
71	A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.	1.4	23
72	A comparison of plants and animals in their responses to risk of consumption. Current Opinion in Plant Biology, 2016, 32, 1-8.	3.5	22

#	Article	IF	CITATIONS
73	Invasive exotic shrub (<i>Rhamnus cathartica</i>) alters the timing and magnitude of postâ€dispersal seed predation of native and exotic species. Journal of Vegetation Science, 2016, 27, 789-799.	1.1	22
74	Induced defences in plants reduce herbivory by increasing cannibalism. Nature Ecology and Evolution, 2017, 1, 1205-1207.	3.4	22
75	A judgment and decisionâ€making model for plant behavior. Ecology, 2018, 99, 1909-1919.	1.5	22
76	Exposure of Unwounded Plants to Chemical Cues Associated with Herbivores Leads to Exposure-Dependent Changes in Subsequent Herbivore Attack. PLoS ONE, 2013, 8, e79900.	1.1	22
77	Predators and invasive plants affect performance of amphibian larvae. Oikos, 2011, 120, 735-739.	1.2	21
78	The maladaptive significance of maternal effects for plants in anthropogenically modified environments. Evolutionary Ecology, 2012, 26, 475-481.	0.5	21
79	Seed bank survival of an invasive species, but not of two native species, declines with invasion. Oecologia, 2012, 168, 1103-1110.	0.9	21
80	Invasive plant alters ability to predict disease vector distribution., 2011, 21, 329-334.		20
81	Fungus Consumption by the Southern Red-backed Vole (Clethrionomys gapperi) in the Southern Appalachians. American Midland Naturalist, 2002, 147, 413-418.	0.2	18
82	Edge-mediated patterns of seed removal in experimentally connected and fragmented landscapes. Landscape Ecology, 2011, 26, 1373-1381.	1.9	18
83	Rodent Granivores Generate Context-specific Seed Removal in Invaded and Uninvaded Habitats. American Midland Naturalist, 2013, 169, 168-178.	0.2	18
84	Spatial arrangement of canopy structure and land-use history alter the effect that herbivores have on plant growth. Ecosphere, 2015, 6, art193.	1.0	18
85	MESIC DECIDUOUS FOREST AS PATCHES OF SMALL-MAMMAL RICHNESS WITHIN AN APPALACHIAN MOUNTAIN FOREST. Journal of Mammalogy, 2003, 84, 627-643.	0.6	17
86	Habitatâ€specific capture timing of deer mice (<i>Peromyscus maniculatus</i>) suggests that predators structure temporal activity of prey. Ethology, 2018, 124, 105-112.	0.5	17
87	Conservation corridors affect the fixation of novel alleles. Conservation Genetics, 2006, 6, 623-630.	0.8	16
88	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	6.0	16
89	Invasive shrubs modify rodent activity timing, revealing a consistent behavioral rule governing diel activity. Behavioral Ecology, 2019, 30, 1069-1075.	1.0	16
90	Fungi-mediated mortality of seeds of two old-field plant species 1. Journal of the Torrey Botanical Society, 2005, 132, 613-617.	0.1	15

#	Article	IF	CITATIONS
91	Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation. Oecologia, 2016, 181, 463-473.	0.9	15
92	Large ecosystem-scale effects of restoration fail to mitigate impacts of land-use legacies in longleaf pine savannas. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
93	Does fungus consumption by the woodland jumping mouse vary with habitat type or the abundance of other small mammals?. Canadian Journal of Zoology, 2003, 81, 753-756.	0.4	14
94	Gastropod Herbivore Preference for Seedlings of Two Native and Two Exotic Grass Species. American Midland Naturalist, 2010, 163, 106-114.	0.2	14
95	Assessing positive and negative ecological effects of corridors. , 2011, , 475-504.		14
96	Effect of Downed Woody Debris on Small Mammal Antiâ€Predator Behavior. Ethology, 2012, 118, 17-23.	0.5	14
97	Altered beta diversity in postâ€agricultural woodlands: two hypotheses and the role of scale. Ecography, 2015, 38, 614-621.	2.1	14
98	Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores. Oecologia, 2018, 186, 703-710.	0.9	14
99	Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. New Phytologist, 2020, 225, 609-620.	3.5	14
100	Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Animal Behaviour, 2020, 164, 181-192.	0.8	14
101	Historical agriculture alters the effects of fire on understory plant beta diversity. Oecologia, 2015, 177, 507-518.	0.9	13
102	The effect of gut passage by two species of avian frugivore on seeds of pokeweed, Phytolacca americana. Canadian Journal of Botany, 2005, 83, 427-431.	1.2	12
103	Historical land use and present-day canopy thinning differentially affect the distribution and abundance of invasive and native ant species. Biological Invasions, 2016, 18, 1813-1825.	1.2	12
104	Seedling responses to decreased snow depend on canopy composition and smallâ€mammal herbivore presence. Ecography, 2019, 42, 780-790.	2.1	11
105	Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia, 2020, 193, 273-283.	0.9	11
106	Changes in Trap Temperature as a Method to Determine Timing of Capture of Small Mammals. PLoS ONE, 2016, 11, e0165710.	1.1	11
107	Agricultural land-use history does not reduce woodland understory herb establishment. Oecologia, 2019, 189, 1049-1060.	0.9	10
108	Belowground herbivory in red pine stands initiates a cascade that increases abundance of Lyme disease vectors. Forest Ecology and Management, 2013, 302, 354-362.	1.4	9

#	Article	IF	CITATIONS
109	Mortality of exotic and native seeds in invaded and uninvaded habitats. Acta Oecologica, 2009, 35, 758-762.	0.5	8
110	Ontogenetic responses of four plant species to additive and interactive effects of landâ€use history, canopy structure and herbivory. Journal of Ecology, 2016, 104, 1518-1526.	1.9	8
111	Past and present disturbances generate spatial variation in seed predation. Ecosphere, 2020, 11, e03116.	1.0	7
112	The Effect of Burial Depth on Removal of Seeds of Phytolacca americana. Southeastern Naturalist, 2007, 6, 151-158.	0.2	6
113	Extreme cold consistently reduces seedling growth but has speciesâ€specific effects on browse tolerance in summer. American Journal of Botany, 2018, 105, 2075-2080.	0.8	6
114	An omnivorous mesopredator modifies predation of omnivoreâ€dispersed seeds. Ecosphere, 2021, 12, e03369.	1.0	6
115	Past agricultural land use affects multiple facets of ungulate antipredator behavior. Behavioral Ecology, 2021, 32, 961-969.	1.0	6
116	Comparison of Estimators for Monitoring Long-Term Population Trends in Deer Mice, <i>Peromyscus maniculatus </i> , on the California Channel Islands. Western North American Naturalist, 2018, 78, 496-509.	0.2	6
117	Invasive Ants Generate Heterogeneity in Patterns of Seed Survival. American Midland Naturalist, 2016, 176, 289.	0.2	5
118	Past freeze–thaw events on <i>Pinus</i> seeds increase seedling herbivory. Ecosphere, 2017, 8, e01748.	1.0	5
119	Largeâ€scale patterns of seed removal by small mammals differ between areas of low―versus highâ€wolf occupancy. Ecology and Evolution, 2020, 10, 7145-7156.	0.8	5
120	TREE COMMUNITIES, MICROHABITAT CHARACTERISTICS, AND SMALL MAMMALS ASSOCIATED WITH THE ENDANGERED ROCK VOLE, MICROTUS CHROTORRHINUS, IN VIRGINIA. Southeastern Naturalist, 2003, 2, 547-558.	0.2	4
121	Soil conditions moderate the effects of herbivores, but not mycorrhizae, on a native bunchgrass. Acta Oecologica, 2016, 77, 100-108.	0.5	4
122	Interactive Effects of Contact Fungicide and Cold Stratification on the Germination Rate for Five Dominant Temperate Tree Species. Forest Science, 2017, 63, 303-309.	0.5	4
123	The important role of animal social status in vertebrate seed dispersal. Ecology Letters, 2022, 25, 1094-1109.	3.0	4
124	Exogenous application of methyl jasmonate alters <i>Pinus resinosa</i> seedling response to simulated frost. Botany, 2018, 96, 705-710.	0.5	3
125	Deterministic insights from stochastic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6965-6967.	3.3	3
126	Snow depth and woody debris drive variation in smallâ€mammal winter seed removal. Journal of Vegetation Science, 2021, 32, e13007.	1.1	3

#	Article	IF	CITATIONS
127	PlantÂinduced defenses that promote cannibalism reduce herbivory as effectively as highly pathogenic herbivore pathogens. Oecologia, 2022, 199, 397-405.	0.9	3
128	Sin Nombre Virus Infection in Deer Mice, Channel Islands, California. Emerging Infectious Diseases, 2008, 14, 1965-1966.	2.0	2
129	Dendroecological analysis reveals long-term, positive effects of an introduced understory plant on canopy tree growth. Biological Invasions, 2012, 14, 2639-2646.	1.2	2
130	A Simple Method for Restraint of Small Mammals for Sampling Blood or Tissue in the Field. Western North American Naturalist, 2021, 81, .	0.2	2
131	Litter removal reduces seed predation in restored prairies during times when seed predation would otherwise be high. Restoration Ecology, 0, , e13550.	1.4	2
132	Effects of Temperature on Seed Viability of Six Ozark Glade Herb Species and Eastern Redcedar (Juniperus virginiana). American Midland Naturalist, 2014, 171, 147-152.	0.2	1
133	Sin Nombre virus prevalence from 2014–2017 in wild deer mice, Peromyscus maniculatus , on five of the California Channel Islands. Zoonoses and Public Health, 2021, 68, 849-853.	0.9	1
134	Useful distraction: Ritualized behavior as an opportunity for recalibration. Behavioral and Brain Sciences, 2006, 29, 625-626.	0.4	0
135	Mycorrhizal inoculation mitigates damage from an intermediate, but not severe, frost event for a cool-season perennial bunchgrass. Botany, 2020, 98, 127-135.	0.5	0
136	Exome sequencing of deer mice on two California Channel Islands identifies potential adaptation to strongly contrasting ecological conditions. Ecology and Evolution, 2021, 11, 17191-17201.	0.8	0