Roberto A Calle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754873/publications.pdf

Version: 2024-02-01

30 papers 1,399 citations

430874 18 h-index 28 g-index

30 all docs

30 docs citations

30 times ranked

1976 citing authors

#	Article	IF	CITATIONS
1	Non-Invasive Biomarkers of Nonalcoholic Steatohepatitis: the FNIH NIMBLE project. Nature Medicine, 2022, 28, 430-432.	30.7	33
2	Inhibition of ketohexokinase in adults with NAFLD reduces liver fat and inflammatory markers: A randomized phase 2 trial. Med, 2021, 2, 800-813.e3.	4.4	24
3	ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nature Medicine, 2021, 27, 1836-1848.	30.7	97
4	GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metabolism, 2020, 32, 938-950.e6.	16.2	70
5	The effects of ertugliflozin on βâ€cell function: Pooled analysis from four phase 3 randomized controlled studies. Diabetes, Obesity and Metabolism, 2020, 22, 2267-2275.	4.4	2
6	Glyco-engineered Long Acting FGF21 Variant with Optimal Pharmaceutical and Pharmacokinetic Properties to Enable Weekly to Twice Monthly Subcutaneous Dosing. Scientific Reports, 2018, 8, 4241.	3.3	17
7	Outpatient versus inpatient mixed meal tolerance and arginine stimulation testing yields comparable measures of variability for assessment of beta cell function. Contemporary Clinical Trials Communications, 2018, 10, 94-99.	1.1	O
8	Efficacy and safety of the glucagon receptor antagonist PFâ€06291874: A 12â€week, randomized, doseâ€response study in patients with type 2 diabetes mellitus on background metformin therapy. Diabetes, Obesity and Metabolism, 2018, 20, 2608-2616.	4.4	20
9	Onceâ€weekly administration of a longâ€acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in nonâ€human primates. Diabetes, Obesity and Metabolism, 2017, 19, 1762-1772.	4.4	106
10	Standardized Mixed-Meal Tolerance and Arginine Stimulation Tests Provide Reproducible and Complementary Measures of \hat{l}^2 -Cell Function: Results From the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series. Diabetes Care, 2016, 39, 1602-1613.	8.6	47
11	A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects. Cell Metabolism, 2016, 23, 427-440.	16.2	377
12	Pharmacokinetics and pharmacodynamics of PFâ€05231023, a novel longâ€acting FGF21 mimetic, in a firstâ€inâ€human study. British Journal of Clinical Pharmacology, 2015, 80, 1051-1063.	2.4	79
13	FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Scientific Reports, 2015, 5, 11382.	3.3	45
14	Mechanistic Investigation of the Preclinical Pharmacokinetics and Interspecies Scaling of PF-05231023, a Fibroblast Growth Factor 21–Antibody Protein Conjugate. Drug Metabolism and Disposition, 2015, 43, 803-811.	3.3	18
15	Pharmacokinetics (PK), Pharmacodynamics (PD) and Integrated PK/PD Modeling of a Novel Long Acting FGF21 Clinical Candidate PF-05231023 in Diet-Induced Obese and Leptin-Deficient Obese Mice. PLoS ONE, 2015, 10, e0119104.	2.5	55
16	Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes. PLoS ONE, 2014, 9, e111767.	2.5	28
17	Arginine is preferred to glucagon for stimulation testing of \hat{I}^2 -cell function. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E720-E727.	3.5	34
18	Effects of multiple doses of the DPP-IV inhibitor PF-734200 on the relationship between GLP-1 and glucose in subjects with type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 2011, 91, e45-e49.	2.8	3

#	Article	IF	CITATIONS
19	Elevated Serum Sorbitol and not Fructose in Type 2 Diabetic Patients. Biomarker Insights, 2010, 5, BMI.S4530.	2.5	27
20	Pharmacokinetics, Pharmacodynamics, Tolerability, and Safety of a Novel Sorbitol Dehydrogenase Inhibitor in Healthy Participants. Journal of Clinical Pharmacology, 2010, 50, 521-530.	2.0	3
21	Nonâ€linear increase in GLPâ€1 levels in response to DPPâ€lV inhibition in healthy adult subjects. Diabetes, Obesity and Metabolism, 2008, 10, 506-513.	4.4	26
22	Phorbol ester increases mitochondrial cholesterol content in NCI H295R cells. Molecular and Cellular Endocrinology, 2008, 296, 53-57.	3.2	10
23	Modulation of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase ($11\hat{l}^2$ HSD) Activity Biomarkers and Pharmacokinetics of PF-00915275, a Selective $11\hat{l}^2$ HSD1 Inhibitor. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 550-556.	3.6	86
24	Characterization and Phospholipase D Mediation of the Angiotensin II Priming Response in Adrenal Glomerulosa Cells. Endocrinology, 2007, 148, 585-593.	2.8	11
25	Mechanism of angiotensin II-induced phospholipase D activation in bovine adrenal glomerulosa cells. Molecular and Cellular Endocrinology, 2002, 192, 7-16.	3.2	27
26	Differential effects of agonists of aldosterone secretion on steroidogenic acute regulatory phosphorylation. Molecular and Cellular Endocrinology, 2001, 173, 87-94.	3.2	34
27	Angiotensin II priming of aldosterone secretion with agents that enhance Ca2+ influx. Molecular and Cellular Endocrinology, 2001, 177, 61-70.	3.2	9
28	Elevated K+ induces myristoylated alanine-rich C-kinase substrate phosphorylation and phospholipase D activation in glomerulosa cells. Molecular and Cellular Endocrinology, 2001, 184, 65-76.	3.2	15
29	Diacylglycerol Production, Ca ²⁺ Influx, and ProteinKinase C Activation in Sustained Cellular Responses*. Endocrine Reviews, 1995, 16, 649-681.	20.1	96
30	TRANSLATIONAL MEDICINE AND ITS IMPACT ON DIABETES DRUG DEVELOPMENT., 0,, 35-61.		0