Xinliang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7547996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of multiband chorus by lower band cascade in the Earth's magnetosphere. Geophysical Research Letters, 2016, 43, 2343-2350.	4.0	62
2	New evidence for generation mechanisms of discrete and hissâ€like whistler mode waves. Geophysical Research Letters, 2014, 41, 4805-4811.	4.0	58
3	Twoâ€Dimensional gcPIC Simulation of Risingâ€Tone Chorus Waves in a Dipole Magnetic Field. Journal of Geophysical Research: Space Physics, 2019, 124, 4157-4167.	2.4	47
4	Generation of Multiband Chorus in the Earth's Magnetosphere: 1â€Ð PIC Simulation. Geophysical Research Letters, 2017, 44, 618-624.	4.0	44
5	The effect of different solar wind parameters upon significant relativistic electron flux dropouts in the magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 4324-4337.	2.4	43
6	Generation of risingâ€ŧone chorus in a twoâ€dimensional mirror field by using the general curvilinear PIC code. Journal of Geophysical Research: Space Physics, 2017, 122, 8154-8165.	2.4	43
7	Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 5377-5390.	2.4	39
8	Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data. Journal of Geophysical Research: Space Physics, 2014, 119, 8992-9003.	2.4	35
9	Generation of magnetosonic waves over a continuous spectrum. Journal of Geophysical Research: Space Physics, 2016, 121, 1137-1147.	2.4	33
10	A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations. Physics of Plasmas, 2016, 23, .	1.9	32
11	Reformation of rippled quasiâ€parallel shocks: 2â€Ð hybrid simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 6385-6396.	2.4	32
12	Statistical Results of the Power Gap Between Lowerâ€Band and Upperâ€Band Chorus Waves. Geophysical Research Letters, 2019, 46, 4098-4105.	4.0	32
13	ION DYNAMICS AT A RIPPLED QUASI-PARALLEL SHOCK: 2D HYBRID SIMULATIONS. Astrophysical Journal, 2016, 823, 7.	4.5	31
14	Whistlerâ€Mode Waves Trapped by Density Irregularities in the Earth's Magnetosphere. Geophysical Research Letters, 2021, 48, e2020GL092305.	4.0	30
15	Particle acceleration and generation of diffuse superthermal ions at a quasiâ€parallel collisionless shock: Hybrid simulations. Journal of Geophysical Research, 2012, 117, .	3.3	29
16	Observational evidence of generation mechanisms for very oblique lower band chorus using THEMIS waveform data. Journal of Geophysical Research: Space Physics, 2016, 121, 6732-6748.	2.4	28
17	Lowerâ€Band "Monochromatic―Chorus Riser Subelement/Wave Packet Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028090.	2.4	28
18	Turbulenceâ€Driven Magnetic Reconnection in the Magnetosheath Downstream of a Quasiâ€Parallel Shock: A Threeâ€Dimensional Global Hybrid Simulation. Geophysical Research Letters, 2020, 47, e2019GL085661.	4.0	27

#	Article	IF	CITATIONS
19	Transmission of largeâ€amplitude ULF waves through a quasiâ€parallel shock at Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 237-245.	2.4	26
20	In Situ Observations of Whistlerâ€Mode Chorus Waves Guided by Density Ducts. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028814.	2.4	26
21	In Situ Observations of Harmonic Alfvén Waves and Associated Heavy Ion Heating. Astrophysical Journal, 2018, 859, 120.	4.5	24
22	Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma. Physics of Plasmas, 2013, 20, 072902.	1.9	23
23	The shape of the Venusian bow shock at solar minimum and maximum: Revisit based on VEX observations. Planetary and Space Science, 2015, 109-110, 32-37.	1.7	23
24	A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory. Physics of Plasmas, 2016, 23, .	1.9	22
25	First report of resonant interactions between whistler mode waves in the Earth's magnetosphere. Geophysical Research Letters, 2017, 44, 5269-5275.	4.0	22
26	Statistical Evidence for EMIC Wave Excitation Driven by Substorm Injection and Enhanced Solar Wind Pressure in the Earth's Magnetosphere: Two Different EMIC Wave Sources. Geophysical Research Letters, 2020, 47, e2020GL090275.	4.0	22
27	Analyzing EMIC Waves in the Inner Magnetosphere Using Longâ€Term Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 7402-7412.	2.4	20
28	Ion dynamics at supercritical quasi-parallel shocks: Hybrid simulations. Physics of Plasmas, 2012, 19, .	1.9	18
29	He ²⁺ dynamics and ion cyclotron waves in the downstream of quasiâ€perpendicular shocks: 2â€D hybrid simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 3225-3236.	2.4	18
30	Lower Band Cascade of Whistler Waves Excited by Anisotropic Hot Electrons: Oneâ€Đimensional PIC Simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 10,448.	2.4	18
31	A statistical study of the spatial distribution and source-region size of chorus waves using Van Allen Probes data. Annales Geophysicae, 2018, 36, 867-878.	1.6	18
32	Gap Formation Around 0.5Ω _{<i>e</i>} of Whistlerâ€Mode Waves Excited by Electron Temperature Anisotropy. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028631.	2.4	18
33	Repetitive Emissions of Risingâ€Tone Chorus Waves in the Inner Magnetosphere. Geophysical Research Letters, 2021, 48, e2021GL094979.	4.0	17
34	Unraveling the Correlation Between Chorus Wave and Electron Beam‣ike Distribution in the Earth's Magnetosphere. Geophysical Research Letters, 2019, 46, 11671-11678.	4.0	16
35	Electrostatic and electromagnetic fluctuations detected inside magnetic flux ropes during magnetic reconnection. Journal of Geophysical Research: Space Physics, 2016, 121, 9473-9482.	2.4	15
36	Parametric decay of a parallel propagating monochromatic whistler wave: Particle-in-cell simulations. Physics of Plasmas, 2017, 24, 012108.	1.9	15

#	Article	IF	CITATIONS
37	Statistical Results of Multiband Chorus by Using THEMIS Waveform Data. Journal of Geophysical Research: Space Physics, 2018, 123, 5506-5515.	2.4	14
38	Generation of Lower Harmonic Magnetosonic Waves Through Nonlinear Waveâ€Wave Interactions. Geophysical Research Letters, 2018, 45, 8029-8034.	4.0	14
39	Observational Evidence for the Origin of Repetitive Chorus Emissions. Geophysical Research Letters, 2022, 49, .	4.0	14
40	ION DYNAMICS DURING THE PARAMETRIC INSTABILITIES OF A LEFT-HAND POLARIZED ALFVÉN WAVE IN A PROTON-ELECTRON-ALPHA PLASMA. Astrophysical Journal, 2014, 780, 56.	4.5	13
41	Twoâ€Dimensional Particleâ€in ell Simulation of Magnetosonic Wave Excitation in a Dipole Magnetic Field. Geophysical Research Letters, 2018, 45, 8712-8720.	4.0	12
42	Generation of harmonic Alfvén waves and its implications to heavy ion heating in the solar corona: Hybrid simulations. Physics of Plasmas, 2020, 27, .	1.9	12
43	Gap Formation Around 0.5Ω _{<i>e</i>} in the Whistlerâ€Mode Waves Due To the Plateau‣ike Shape in the Parallel Electron Distribution: 2D PIC Simulations. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	12
44	Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations. Physics of Plasmas, 2013, 20, .	1.9	11
45	ELECTROMAGNETIC PROTON/PROTON INSTABILITY AND ITS IMPLICATIONS FOR ION HEATING IN THE EXTENDED FAST SOLAR WIND. Astrophysical Journal, 2013, 764, 71.	4.5	11
46	Observational Evidence for Whistler Mode Waves Guided/Ducted by the Inner and Outer Edges of the Plasmapause. Geophysical Research Letters, 2021, 48, e2021GL092652.	4.0	11
47	Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations. Physics of Plasmas, 2013, 20, .	1.9	10
48	Heating of the background plasma by obliquely propagating Alfven waves excited in the electromagnetic alpha/proton instability. Physics of Plasmas, 2012, 19, 032901.	1.9	9
49	The Effects of Thermal Electrons on Whistler Mode Waves Excited by Anisotropic Hot Electrons: Linear Theory and 2â€Ð PIC Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 5234-5245.	2.4	9
50	MMS Observations of Broadband Electrostatic Waves in Electron Diffusion Region of Magnetotail Reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028882.	2.4	9
51	Oneâ€Dimensional gcPlCâ€ <i>Îf</i> Simulation of Hooked Chorus Waves in the Earth's Inner Magnetosphere. Geophysical Research Letters, 2022, 49, .	4.0	9
52	Particleâ€inâ€Cell Simulations of Characteristics of Risingâ€Tone Chorus Waves in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027961.	2.4	8
53	Particleâ€Inâ€Cell Simulations of Electrostatic Solitary Waves in Asymmetric Magnetic Reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029290.	2.4	8
54	Simultaneous Observation of Whistler Waves and Electron Cyclotron Harmonic Waves in the Separatrix Region of Magnetopause Reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029609.	2.4	8

#	Article	IF	CITATIONS
55	PIC Simulations of Microinstabilities and Waves at Near-Sun Solar Wind Perpendicular Shocks: Predictions for Parker Solar Probe and Solar Orbiter. Astrophysical Journal Letters, 2020, 900, L24.	8.3	8
56	Theoretical analysis on lower band cascade as a mechanism for multiband chorus in the Earth's magnetosphere. AIP Advances, 2018, 8, .	1.3	7
57	Two-band whistler-mode waves excited by an electron bi-Maxwellian distribution plus parallel beams. AIP Advances, 2020, 10, 125010.	1.3	7
58	He ²⁺ HEATING VIA PARAMETRIC INSTABILITIES OF PARALLEL PROPAGATING ALFVÉN WAVES WITH AN INCOHERENT SPECTRUM. Astrophysical Journal, 2016, 827, 64.	1 4.5	6
59	Nonlinear Evolution of Counterâ€Propagating Whistler Mode Waves Excited by Anisotropic Electrons Within the Equatorial Source Region: 1â€D PIC Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 1200-1207.	2.4	6
60	Two-dimensional Hybrid Simulations of Filamentary Structures and Kinetic Slow Waves Downstream of a Quasi-parallel Shock. Astrophysical Journal, 2018, 861, 57.	4.5	6
61	Expansion of Solar Coronal Hot Electrons in an Inhomogeneous Magnetic Field: 1D PIC Simulation. Astrophysical Journal, 2019, 887, 96.	4.5	6
62	The Efficiency of Ion Stochastic Heating by a Monochromatic Obliquely Propagating Low-Frequency Alfven Wave. Plasma Science and Technology, 2014, 16, 919-923.	1.5	5
63	Nonlinear Wave–Wave Coupling Related to Whistler-mode and Electron Bernstein Waves Observed by the Parker Solar Probe. Astrophysical Journal, 2021, 918, 26.	4.5	5
64	The Correlation between Whistler Mode Waves and Electron Beamâ€like Distribution: Test particle simulations and THEMIS observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029834.	2.4	5
65	Parametric decay of oblique whistler waves in the Earth's magnetosphere: 2-D PIC simulations. Physics of Plasmas, 2018, 25, 072901.	1.9	4
66	Dissipation and reformation of thermal fronts in solar flares. Astrophysics and Space Science, 2019, 364, 1.	1.4	4
67	Largeâ€Scale Highâ€Speed Jets in Earth's Magnetosheath: Clobal Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
68	Dynamics of charged particles and perpendicular diffusion in turbulent magnetic field. Astrophysics and Space Science, 2011, 335, 399-403.	1.4	3
69	Comparison between magnetic coplanarity and MVA methods in determining the normal of Venusian bow shock. Science Bulletin, 2013, 58, 2469-2472.	1.7	3
70	Modulation of Magnetosonic Waves by Background Plasma Density in a Dipole Magnetic Field: 2â€Ð PIC Simulation. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029729.	2.4	3
71	lon stochastic heating by obliquely propagating magnetosonic waves. Physics of Plasmas, 2012, 19, 062111.	1.9	2
72	In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection. Earth and Planetary Physics, 2019, 3, 1-7.	1.1	2

#	Article	IF	CITATIONS
73	Propagation of Electromagnetic Ion Cyclotron Waves in a Dipole Magnetic Field: A 2â€D Hybrid Simulation. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029720.	2.4	2
74	Deformation of Electron Distributions Due to Landau Trapping by the Whistlerâ€Mode Wave. Geophysical Research Letters, 2022, 49, .	4.0	2
75	Electrostatic Solitary Waves and Electron-beam Instabilities in the Separatrix Region of Magnetic Reconnection. Astrophysical Journal, 2022, 933, 67.	4.5	2
76	The effects of beam proportion on electromagnetic proton/proton instability and associated ion heating: 2D hybrid simulation. Physics of Plasmas, 2020, 27, .	1.9	1
77	Electron Acceleration by Moderate-Mach-number Low-β Shocks: Particle-in-Cell Simulations. Astrophysical Journal, 2022, 930, 155.	4.5	1