Irene Volitakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7547803/publications.pdf

Version: 2024-02-01

66315 76872 9,632 74 42 74 citations h-index g-index papers 85 85 85 8682 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deferiprone Treatment in Aged Transgenic Tau Mice Improves Y-Maze Performance and Alters Tau Pathology. Neurotherapeutics, 2021, 18, 1081-1094.	2.1	17
2	Cu ^{II} (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease. British Journal of Pharmacology, 2020, 177, 656-667.	2.7	92
3	Characterising the brain metalloproteome in Down syndrome patients with concomitant Alzheimer's pathology. Metallomics, 2020, 12, 114-132.	1.0	O
4	Copper Ionophores as Novel Antiobesity Therapeutics. Molecules, 2020, 25, 4957.	1.7	8
5	The Effects of Clioquinol on P-glycoprotein Expression and Biometal Distribution in the Mouse Brain Microvasculature. Journal of Pharmaceutical Sciences, 2019, 108, 2247-2255.	1.6	5
6	Zn-DTSM, A Zinc Ionophore with Therapeutic Potential for Acrodermatitis Enteropathica?. Nutrients, 2019, 11, 206.	1.7	1
7	Ionophore and Biometal Modulation of P-glycoprotein Expression and Function in Human Brain Microvascular Endothelial Cells. Pharmaceutical Research, 2018, 35, 83.	1.7	16
8	Effect of Structural Modifications to Glyoxal-bis(thiosemicarbazonato)copper(II) Complexes on Cellular Copper Uptake, Copper-Mediated ATP7A Trafficking, and P-Glycoprotein Mediated Efflux. Journal of Medicinal Chemistry, 2018, 61, 711-723.	2.9	21
9	Direct determination of zinc in plasma by graphite furnace atomic absorption spectrometry using palladium/magnesium and EDTA matrix modification with high temperature pyrolysis. Journal of Analytical Atomic Spectrometry, 2017, 32, 843-847.	1.6	12
10	The <i>APOE</i> ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease. ACS Chemical Neuroscience, 2017, 8, 1459-1464.	1.7	48
11	Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget, 2016, 7, 37064-37080.	0.8	69
12	Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid. Acta Neuropathologica Communications, 2016, 4, 119.	2.4	39
13	Lead and manganese levels in serum and erythrocytes in Alzheimer's disease and mild cognitive impairment: results from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing. Metallomics, 2016, 8, 628-632.	1.0	30
14	Effects of Neonatal Iron Feeding and Chronic Clioquinol Administration on the Parkinsonian Human A53T Transgenic Mouse. ACS Chemical Neuroscience, 2016, 7, 360-366.	1.7	32
15	Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease. Redox Biology, 2015, 4, 363-374.	3.9	31
16	Decreased Plasma Iron in Alzheimer's Disease Is Due to Transferrin Desaturation. ACS Chemical Neuroscience, 2015, 6, 398-402.	1.7	75
17	Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiology of Disease, 2015, 81, 168-175.	2.1	73
18	Novel Fluorinated 8-Hydroxyquinoline Based Metal Ionophores for Exploring the Metal Hypothesis of Alzheimer's Disease. ACS Medicinal Chemistry Letters, 2015, 6, 1025-1029.	1.3	41

#	Article	IF	Citations
19	Enduring Elevations of Hippocampal Amyloid Precursor Protein and Iron Are Features of \hat{l}^2 -Amyloid Toxicity and Are Mediated by Tau. Neurotherapeutics, 2015, 12, 862-873.	2.1	50
20	Increased metal content in the TDP-43A315T transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2014, 6, 15.	1.7	37
21	Deregulation of biometal homeostasis: the missing link for neuronal ceroid lipofuscinoses?. Metallomics, 2014, 6, 932-943.	1.0	27
22	Altered transition metal homeostasis in Niemann–Pick disease, type C1. Metallomics, 2014, 6, 542-553.	1.0	26
23	The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue. Journal of Analytical Atomic Spectrometry, 2014, 29, 565-570.	1.6	45
24	An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chemical Science, 2014, 5, 2160-2169.	3.7	98
25	Altered selenium status in Huntington's disease: Neuroprotection by selenite in the N171-82Q mouse model. Neurobiology of Disease, 2014, 71, 34-42.	2.1	39
26	Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease. Molecular Neurodegeneration, 2014, 9, 27.	4.4	60
27	Motor and cognitive deficits in aged tau knockout mice in two background strains. Molecular Neurodegeneration, 2014, 9, 29.	4.4	117
28	Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathologica Communications, 2014, 2, 25.	2.4	37
29	Neuroprotective Copper Bis(thiosemicarbazonato) Complexes Promote Neurite Elongation. PLoS ONE, 2014, 9, e90070.	1.1	39
30	Copper modulates the large dense core vesicle secretory pathway in PC12 cells. Metallomics, 2013, 5, 700.	1.0	10
31	Longitudinal Analysis of Serum Copper and Ceruloplasmin in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 34, 171-182.	1.2	46
32	Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radical Biology and Medicine, 2013, 60, 147-156.	1.3	26
33	Altered biometal homeostasis is associated with CLN6 mRNA loss in mouse neuronal ceroid lipofuscinosis. Biology Open, 2013, 2, 635-646.	0.6	27
34	Iron Accumulates in Huntington's Disease Neurons: Protection by Deferoxamine. PLoS ONE, 2013, 8, e77023.	1.1	119
35	Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis. PLoS ONE, 2013, 8, e58644.	1.1	28
36	Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nature Medicine, 2012, 18, 291-295.	15.2	491

3

#	Article	lF	CITATIONS
37	Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radical Biology and Medicine, 2012, 52, 298-302.	1.3	144
38	Mechanisms Controlling the Cellular Accumulation of Copper Bis(thiosemicarbazonato) Complexes. Inorganic Chemistry, 2011, 50, 9594-9605.	1.9	76
39	Regulation of Insulin-Regulated Membrane Aminopeptidase Activity by Its C-Terminal Domain. Biochemistry, 2011, 50, 2611-2622.	1.2	30
40	The Alzheimer's therapeutic PBT2 promotes amyloidâ€Î² degradation and GSK3 phosphorylation via a metal chaperone activity. Journal of Neurochemistry, 2011, 119, 220-230.	2.1	167
41	Presenilins Promote the Cellular Uptake of Copper and Zinc and Maintain Copper Chaperone of SOD1-dependent Copper/Zinc Superoxide Dismutase Activity. Journal of Biological Chemistry, 2011, 286, 9776-9786.	1.6	69
42	Cysteine Oxidation within N-terminal Mutant Huntingtin Promotes Oligomerization and Delays Clearance of Soluble Protein. Journal of Biological Chemistry, 2011, 286, 18320-18330.	1.6	54
43	Apolipoprotein E ablation decreases synaptic vesicular zinc in the brain. BioMetals, 2010, 23, 1085-1095.	1.8	21
44	Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. Journal of Neurochemistry, 2010, 114, 440-451.	2.1	37
45	Paradoxical Condensation of Copper with Elevated \hat{l}^2 -Amyloid in Lipid Rafts under Cellular Copper Deficiency Conditions. Journal of Biological Chemistry, 2009, 284, 21899-21907.	1.6	55
46	Increasing Cu bioavailability inhibits $\hat{Al^2}$ oligomers and tau phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 381-386.	3.3	259
47	Chronic Exposure to High Levels of Zinc or Copper has Little Effect on Brain Metal Homeostasis or \widehat{Al}^2 Accumulation in Transgenic APP-C100 Mice. Cellular and Molecular Neurobiology, 2009, 29, 757-767.	1.7	16
48	Intracellular amyloid formation in muscle cells of $\hat{Al^2}$ -transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Molecular Neurodegeneration, 2009, 4, 2.	4.4	39
49	Sustained Activation of Glial Cell Epidermal Growth Factor Receptor by Bis(thiosemicarbazonato) Metal Complexes Is Associated with Inhibition of Protein Tyrosine Phosphatase Activity. Journal of Medicinal Chemistry, 2009, 52, 6606-6620.	2.9	37
50	Zinc and copper modulate Alzheimer ${\rm Al}^2$ levels in human cerebrospinal fluid. Neurobiology of Aging, 2009, 30, 1069-1077.	1.5	126
51	Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models. Metallomics, 2009, 1, 53-58.	1.0	118
52	Plasma Amyloid \hat{l}^2 42 and Amyloid \hat{l}^2 40 Levels Are Associated With Early Cognitive Dysfunction After Cardiac Surgery. Annals of Thoracic Surgery, 2009, 88, 1426-1432.	0.7	35
53	Investigating copperâ€regulated protein expression in Menkes fibroblasts using antibody microarrays. Proteomics, 2008, 8, 1819-1831.	1.3	8
54	Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial AÎ ² . Neuron, 2008, 59, 43-55.	3.8	629

#	Article	IF	Citations
55	Selective Intracellular Release of Copper and Zinc Ions from Bis(thiosemicarbazonato) Complexes Reduces Levels of Alzheimer Disease Amyloid-Î ² Peptide. Journal of Biological Chemistry, 2008, 283, 4568-4577.	1.6	177
56	Intracellular copper deficiency increases amyloid- \hat{l}^2 secretion by diverse mechanisms. Biochemical Journal, 2008, 412, 141-152.	1.7	75
57	Platinum-based inhibitors of amyloid- \hat{l}^2 as therapeutic agents for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6813-6818.	3.3	182
58	Insights into Zn ²⁺ homeostasis in neurons from experimental and modeling studies. American Journal of Physiology - Cell Physiology, 2008, 294, C726-C742.	2.1	184
59	Differential modulation of Alzheimer's disease amyloid \hat{l}^2 -peptide accumulation by diverse classes of metal ligands. Biochemical Journal, 2007, 407, 435-450.	1.7	58
60	Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau. PLoS ONE, 2007, 2, e536.	1.1	291
61	Mechanisms of Copper Ion Mediated Huntington's Disease Progression. PLoS ONE, 2007, 2, e334.	1.1	159
62	Radioiodinated clioquinol as a biomarker for beta-amyloid: Zn2+ complexes in Alzheimer's disease. Aging Cell, 2006, 5, 69-79.	3.0	74
63	Overexpression of ${\rm A\hat{l}^2}$ is associated with acceleration of onset of motor impairment and superoxide dismutase 1 aggregation in an amyotrophic lateral sclerosis mouse model. Aging Cell, 2006, 5, 153-165.	3.0	37
64	Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: Implications for Alzheimer β-amyloid pathology. Journal of Inorganic Biochemistry, 2006, 100, 952-962.	1.5	93
65	Degradation of the Alzheimer Disease Amyloid \hat{l}^2 -Peptide by Metal-dependent Up-regulation of Metalloprotease Activity. Journal of Biological Chemistry, 2006, 281, 17670-17680.	1.6	267
66	Hypoxia-inducible Factor Prolyl 4-Hydroxylase Inhibition. Journal of Biological Chemistry, 2005, 280, 41732-41743.	1.6	265
67	Neuronal Zinc Exchange with the Blood Vessel Wall Promotes Cerebral Amyloid Angiopathy in an Animal Model of Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 3453-3459.	1.7	135
68	Genetically Decreased Spinal Cord Copper Concentration Prolongs Life in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2004, 24, 7945-7950.	1.7	50
69	Metal-Protein Attenuation With Iodochlorhydroxyquin (Clioquinol) Targeting AÎ ² Amyloid Deposition and Toxicity in Alzheimer Disease. Archives of Neurology, 2003, 60, 1685.	4.9	951
70	Neurotoxic, Redox-competent Alzheimer's β-Amyloid Is Released from Lipid Membrane by Methionine Oxidation. Journal of Biological Chemistry, 2003, 278, 42959-42965.	1.6	176
71	Overexpression of Alzheimer's Disease Amyloid-Î ² Opposes the Age-dependent Elevations of Brain Copper and Iron. Journal of Biological Chemistry, 2002, 277, 44670-44676.	1.6	324
72	Copper and Zinc Binding Modulates the Aggregation and Neurotoxic Properties of the Prion Peptide PrP106a ² 126. Biochemistry, 2001, 40, 8073-8084.	1.2	264

#	Article	lF	CITATIONS
73	Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits \hat{l}^2 -Amyloid Accumulation in Alzheimer's Disease Transgenic Mice. Neuron, 2001, 30, 665-676.	3.8	1,419
74	Alzheimer's Disease Amyloid- \hat{l}^2 Binds Copper and Zinc to Generate an Allosterically Ordered Membrane-penetrating Structure Containing Superoxide Dismutase-like Subunits. Journal of Biological Chemistry, 2001, 276, 20466-20473.	1.6	595