Bence György

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7547708/publications.pdf

Version: 2024-02-01

41 papers

5,526 citations

361045 20 h-index 35 g-index

42 all docs 42 docs citations

times ranked

42

9510 citing authors

#	Article	IF	CITATIONS
1	c61G>A in OVOL2 is a Pathogenic $5\hat{a}\in^2$ Untranslated Region Variant Causing Posterior Polymorphous Corneal Dystrophy 1. Cornea, 2022, 41, 89-94.	0.9	3
2	Rare occult macular dystrophy with a pathogenic variant in the RP1L1 gene in a patient of Swiss descent. American Journal of Ophthalmology Case Reports, 2022, 26, 101527.	0.4	0
3	CRISPR cuts disease course short in blood disorders. Science Translational Medicine, 2021, 13, .	5.8	0
4	Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin. Science Advances, 2021, 7, .	4.7	17
5	Effect of prolactin on normal and keratoconus human corneal stromal fibroblasts in vitro. PLoS ONE, 2021, 16, e0249344.	1.1	2
6	Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. Molecular Therapy - Nucleic Acids, 2020, 21, 1-12.	2.3	8
7	Genome and base editing for genetic hearing loss. Hearing Research, 2020, 394, 107958.	0.9	18
8	Organoids control glucose. Science Translational Medicine, 2020, 12, .	5.8	1
9	Bispecific CAR T cells have a dual grasp on tumors. Science Translational Medicine, 2020, 12, .	5.8	1
10	CRISPR-engineered immune cells reach the bedside. Science Translational Medicine, 2020, 12, .	5.8	0
11	Clearing the path for gene therapy. Science Translational Medicine, 2020, 12, .	5.8	0
12	Hope on the horizon for inherited blindness. Science Translational Medicine, 2020, 12, .	5.8	0
13	Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nature Medicine, 2019, 25, 1123-1130.	15.2	149
14	High levels of AAV vector integration into CRISPR-induced DNA breaks. Nature Communications, 2019, 10, 4439.	5.8	257
15	Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles. Scientific Reports, 2019, 9, 17387.	1.6	17
16	Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Molecular Therapy - Methods and Clinical Development, 2019, 13, 1-13.	1.8	110
17	Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts. Scientific Reports, 2018, 8, 2324.	1.6	7
18	CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Molecular Therapy - Nucleic Acids, 2018, 11, 429-440.	2.3	116

#	Article	IF	CITATIONS
19	Extracellular vesicles: nature's nanoparticles for improving gene transfer with adenoâ€essociated virus vectors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1488.	3.3	29
20	Secretion and Uptake of \hat{l} ±-Synuclein Via Extracellular Vesicles in Cultured Cells. Cellular and Molecular Neurobiology, 2018, 38, 1539-1550.	1.7	79
21	TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron, 2018, 99, 736-753.e6.	3.8	250
22	Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV. Molecular Therapy, 2017, 25, 379-391.	3.7	181
23	Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Scientific Reports, 2017, 7, 45329.	1.6	108
24	567. CRISPR-Cas9 Mediated Gene Editing in a Monogenic Form of Alzheimer's Disease. Molecular Therapy, 2016, 24, S226-S227.	3.7	8
25	594. Exosome-Associated AAV Enhances Retinal Transduction Following Intravitreal Injection. Molecular Therapy, 2016, 24, S235.	3.7	1
26	Improved Characterization of EV Preparations Based on Protein to Lipid Ratio and Lipid Properties. PLoS ONE, 2015, 10, e0121184.	1.1	151
27	Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions. Annual Review of Pharmacology and Toxicology, 2015, 55, 439-464.	4.2	415
28	Emerging role of extracellular vesicles in inflammatory diseases. Nature Reviews Rheumatology, 2014, 10, 356-364.	3.5	563
29	Extracellular Vesicles as Enhancers of Virus Vector–Mediated Gene Delivery. Human Gene Therapy, 2014, 25, 785-786.	1.4	13
30	Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cellular and Molecular Life Sciences, 2014, 71, 4055-4067.	2.4	44
31	Immunosuppressants increase the levels of natural autoantibodies reactive with glycosaminoglycans in myasthenia gravis. Journal of Neuroimmunology, 2014, 276, 224-228.	1.1	0
32	Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thrombosis Research, 2014, 133, 285-292.	0.8	99
33	Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery inÂvivo. Biomaterials, 2014, 35, 7598-7609.	5.7	112
34	The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis. Immunology Letters, 2013, 152, 25-31.	1.1	10
35	Response: systematic use of Triton lysis as a control for microvesicle labeling. Blood, 2012, 119, 2175-2176.	0.6	9
36	Citrullination under physiological and pathological conditions. Joint Bone Spine, 2012, 79, 431-436.	0.8	107

Bence György

#	Article	IF	CITATIONS
37	Improved Flow Cytometric Assessment Reveals Distinct Microvesicle (Cell-Derived Microparticle) Signatures in Joint Diseases. PLoS ONE, 2012, 7, e49726.	1.1	129
38	Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood, 2011, 117, e39-e48.	0.6	363
39	Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 2011, 68, 2667-2688.	2.4	1,719
40	HLA-association of serum levels of natural antibodies. Molecular Immunology, 2009, 46, 1416-1423.	1.0	15
41	Citrullination: A posttranslational modification in health and disease. International Journal of Biochemistry and Cell Biology, 2006, 38, 1662-1677.	1.2	415