Derek J Platt

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7547630/derek-j-platt-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15	1,749	11	15
papers	citations	h-index	g-index
15	2,133 ext. citations	15.7	4.63
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
15	Transferrable protection by gut microbes against STING-associated lung disease. <i>Cell Reports</i> , 2021 , 35, 109113	10.6	1
14	HSV-1 and Zika Virus but Not SARS-CoV-2 Replicate in the Human Cornea and Are Restricted by Corneal Type III Interferon. <i>Cell Reports</i> , 2020 , 33, 108339	10.6	22
13	STING Gain-of-Function Disrupts Lymph Node Organogenesis and Innate Lymphoid Cell Development in Mice. <i>Cell Reports</i> , 2020 , 31, 107771	10.6	8
12	Immunopathology of Zika virus infection. Advances in Virus Research, 2020, 107, 223-246	10.7	
11	STING-associated lung disease in mice relies on T cells but not type I interferon. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 144, 254-266.e8	11.5	42
10	A Human STAT1 Gain-of-Function Mutation Impairs CD8 T Cell Responses against Gammaherpesvirus 68. <i>Journal of Virology</i> , 2019 , 93,	6.6	3
9	A Human Gain-of-Function STING Mutation Causes Immunodeficiency and Gammaherpesvirus-Induced Pulmonary Fibrosis in Mice. <i>Journal of Virology</i> , 2019 , 93,	6.6	27
8	Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	63
7	STING-associated vasculopathy develops independently of IRF3 in mice. <i>Journal of Experimental Medicine</i> , 2017 , 214, 3279-3292	16.6	90
6	Consequences of congenital Zika virus infection. Current Opinion in Virology, 2017, 27, 1-7	7.5	35
5	Zika virus infection damages the testes in mice. <i>Nature</i> , 2016 , 540, 438-442	50.4	357
4	A Mouse Model of Zika Virus Pathogenesis. <i>Cell Host and Microbe</i> , 2016 , 19, 720-30	23.4	652
3	Structural Basis of Zika Virus-Specific Antibody Protection. <i>Cell</i> , 2016 , 166, 1016-1027	56.2	260
2	Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. <i>Cell Reports</i> , 2016 , 16, 1485-1491	10.6	158
1	Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 455, 107-12	3.4	31