Moinuddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7547512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4-Chloro-orthophenylenediamine alters DNA integrity and affects cell survival: inferences from a computational, biophysical/biochemical, microscopic and cell-based study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 14176-14187.	2.0	4
2	Attenuation of hyperglycemia and amadori products by aminoguanidine in alloxan-diabetic rabbits occurs via enhancement in antioxidant defenses and control of stress. PLoS ONE, 2022, 17, e0262233.	1.1	6
3	Risk of Carcinogenicity Associated with Synthetic Hair Dyeing Formulations: A Biochemical View on Action Mechanisms, Genetic Variation and Prevention. Indian Journal of Clinical Biochemistry, 2022, 37, 399-409.	0.9	3
4	Characterization of Glyoxal Modified LDL: Role in the Generation of Circulating Autoantibodies in Type 2 Diabetes Mellitus and Coronary Artery Disease. Current Drug Targets, 2021, 22, .	1.0	0
5	Hydroxyl radical induced structural perturbations make insulin highly immunogenic and generate an auto-immune response in type 2 diabetes mellitus. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119640.	2.0	8
6	Ampicillin-augmented silver nanoparticles for synergistic antimicrobial response: A promising therapeutic approach. Current Pharmaceutical Biotechnology, 2021, 22, 2019-2030.	0.9	1
7	Preferential recognition of epitopes on peroxynitrite-modified alpha-2-macroglobulin by circulating autoantibodies in rheumatoid arthritis patients. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1984-1994.	2.0	2
8	Nitroxidized-HSA induced oxidative damage in human erythrocytes: an ex vivo approach. Journal of Biomolecular Structure and Dynamics, 2020, 38, 918-927.	2.0	0
9	Molecular docking explores heightened immunogenicity and structural dynamics of acetaldehyde human immunoglobulin G adduct. IUBMB Life, 2019, 71, 1522-1536.	1.5	1
10	A study on hepatopathic, dyslipidemic and immunogenic properties of fructosylated-HSA-AGE and binding of autoantibodies in sera of obese and overweight patients with fructosylated-HSA-AGE. PLoS ONE, 2019, 14, e0216736.	1.1	1
11	Unsaturated aldehyde, 4-hydroxynonenal (HNE) alters the structural integrity of HSA with consequences in the immuno-pathology of rheumatoid arthritis. International Journal of Biological Macromolecules, 2018, 112, 306-314.	3.6	13
12	Structural and immunological characterization of hydroxyl radical modified human IgG: Clinical correlation in rheumatoid arthritis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 194-201.	2.0	2
13	d-Ribose induced glycoxidative insult to hemoglobin protein: An approach to spot its structural perturbations. International Journal of Biological Macromolecules, 2018, 112, 134-147.	3.6	28
14	Characterization of methylglyoxal-modified human IgG by physicochemical methods. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3172-3183.	2.0	2
15	Fructose-human serum albumin interaction undergoes numerous biophysical and biochemical changes before forming ACEs and aggregates. International Journal of Biological Macromolecules, 2018, 109, 896-906.	3.6	11
16	Glycation, oxidation and glycoxidation of IgG: a biophysical, biochemical, immunological and hematological study. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2637-2653.	2.0	16
17	Methylglyoxal modified IgG generates autoimmune response in rheumatoid arthritis. International Journal of Biological Macromolecules, 2018, 118, 15-23.	3.6	12
18	Methylglyoxal produces more changes in biochemical and biophysical properties of human IgG under high glucose compared to normal glucose level. PLoS ONE, 2018, 13, e0191014.	1.1	12

Moinuddin

#	Article	IF	CITATIONS
19	Amorphous aggregate adducts of linker histone H1 turn highly immunologic in the cancers of oesophagus, stomach, gall bladder and ovary. International Journal of Biological Macromolecules, 2017, 96, 507-517.	3.6	6
20	Studies on glycoxidatively modified human IgG: Implications in immuno-pathology of type 2 diabetes mellitus. International Journal of Biological Macromolecules, 2017, 104, 19-29.	3.6	18
21	Role of Peroxynitrite-Induced Activation of Poly(ADP-Ribose) Polymerase (PARP) in Circulatory Shock and Related Pathological Conditions. Cardiovascular Toxicology, 2017, 17, 373-383.	1.1	16
22	Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study. Archives of Biochemistry and Biophysics, 2016, 603, 72-80.	1.4	9
23	Circulating autoantibodies in cancer patients have high specificity for glycoxidation modified histone H2A. Clinica Chimica Acta, 2016, 453, 48-55.	0.5	13
24	Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes. International Journal of Biological Macromolecules, 2016, 86, 799-809.	3.6	19
25	Immunochemical studies on HNE-modified HSA: Anti-HNE–HSA antibodies as a probe for HNE damaged albumin in SLE. International Journal of Biological Macromolecules, 2016, 86, 145-154.	3.6	18
26	Neo-epitopes on crotonaldehyde modified DNA preferably recognize circulating autoantibodies in cancer patients. Tumor Biology, 2016, 37, 1817-1824.	0.8	10
27	Structural changes in histone H2A by methylglyoxal generate highly immunogenic amorphous aggregates with implications in auto-immune response in cancer. Glycobiology, 2016, 26, 129-141.	1.3	28
28	Immunoâ€chemistry of hydroxyl radical modified <scp>GAD</scp> â€65: A possible role in experimental and human diabetes mellitus. IUBMB Life, 2015, 67, 746-756.	1.5	11
29	A clinical correlation of anti-DNA-ACE autoantibodies in type 2 diabetes mellitus with disease duration. Cellular Immunology, 2015, 293, 74-79.	1.4	8
30	Glycoxidation of histone proteins in autoimmune disorders. Clinica Chimica Acta, 2015, 450, 25-30.	0.5	18
31	Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian Journal of Clinical Biochemistry, 2015, 30, 368-385.	0.9	49
32	Fructosylation generates neoâ€epitopes on human serum albumin. IUBMB Life, 2015, 67, 338-347.	1.5	17
33	Human DNA damage by the synergistic action of 4â€aminobiphenyl and nitric oxide: An immunochemical study. Environmental Toxicology, 2014, 29, 568-576.	2.1	31
34	Studies on peroxynitrite-modified H1 histone: Implications in systemic lupus erythematosus. Biochimie, 2014, 97, 104-113.	1.3	24
35	Genotoxicity and immunogenicity of crotonaldehyde modified human DNA. International Journal of Biological Macromolecules, 2014, 65, 471-478.	3.6	10
36	Fine characterization of glucosylated human IgG by biochemical and biophysical methods. International Journal of Biological Macromolecules, 2014, 69, 408-415.	3.6	39

Moinuddin

#	Article	IF	CITATIONS
37	Characterization of hydroxyl radical modified GAD ₆₅ : A potential autoantigen in type 1 diabetes. Autoimmunity, 2009, 42, 150-158.	1.2	36
38	Recognition of Human Anti-DNA Autoantibodies by Secretory Antigen 85 Complex of Mycobacterium Tuberculosis H37Rv. World Journal of Microbiology and Biotechnology, 2004, 20, 383-387.	1.7	0
39	Binding of naturally occurring anti-DNA antibodies to estradiol. IUBMB Life, 1998, 45, 511-518.	1.5	2
40	SLE autoantibodies binding to native calf thymus DNA brominated in high salt. Lupus, 1998, 7, 524-529.	0.8	2
41	Sle autoantibodies recognize spermine induced Zâ€conformation of native calf thymus DNA. IUBMB Life, 1996, 40, 787-797.	1.5	2
42	SLE Anti-DNA Autoantibodies Binding Estradiol-Albumin-DNA Conjugate. Lupus, 1994, 3, 43-46.	0.8	16
43	Calf Thymus DNA Exposed to Quinacrine at Physiological Temperatures and pH Acquires Immunogenicity: A Threat for Long Term Quinacrine Therapy. Indian Journal of Clinical Biochemistry, 0,	0.9	Ο