Rodney J Weber

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7547312/rodney-j-weber-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 269 22,105 143 h-index g-index citations papers 6.8 6.76 335 25,334 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
269	Emissions, chemistry or bidirectional surface transfer? Gas phase formic acid dynamics in the atmosphere. <i>Atmospheric Environment</i> , 2022 , 274, 118995	5.3	2
268	Water soluble reactive phosphate (SRP) in atmospheric particles over East Mediterranean: The importance of dust and biomass burning events <i>Science of the Total Environment</i> , 2022 , 154263	10.2	
267	Hydrogen chloride (HCl) at ground sites during CalNex 2010 and insight into its thermodynamic properties <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127, 1-16	4.4	O
266	THE NASA ATMOSPHERIC TOMOGRAPHY (ATom) MISSION: Imaging the Chemistry of the Global Atmosphere. <i>Bulletin of the American Meteorological Society</i> , 2021 , 1-53	6.1	6
265	Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15023-15063	6.8	4
264	Evaluation of a New Aerosol Chemical Speciation Monitor (ACSM) System at an Urban Site in Atlanta, GA: The Use of Capture Vaporizer and PM2.5 Inlet. ACS Earth and Space Chemistry, 2021 , 5, 256	5 ³ 2376	; ²
263	Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6023-6033	6.8	10
262	Low-Molecular-Weight Carboxylic Acids in the Southeastern U.S.: Formation, Partitioning, and Implications for Organic Aerosol Aging. <i>Environmental Science & Environmental Sc</i>	10.3	5
261	Hydroxymethanesulfonate (HMS) Formation during Summertime Fog in an Arctic Oil Field. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 511-518	11	3
260	A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 4707-4719	4	O
259	Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: variations with season and synoptic condition. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11079-11098	6.8	3
258	Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). <i>Bulletin of the American Meteorological Society</i> , 2021 , 1-51	6.1	10
257	Fine Aerosol Acidity and Water during Summer in the Eastern North Atlantic. <i>Atmosphere</i> , 2021 , 12, 104	10 .7	
256	Assessment of online water-soluble brown carbon measuring systems for aircraft sampling. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 6357-6378	4	1
255	Fine Particle Iron in Soils and Road Dust Is Modulated by Coal-Fired Power Plant Sulfur. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	6
254	The Acidity of Atmospheric Particles and Clouds. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4809-488	86 .8	165
253	Characterization and comparison of PM_{2.5} oxidative potential assessed by two acellular assays. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5197-5210	6.8	17

(2019-2020)

252	Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL088747	4.9	26	
251	Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3249-3258	6.8	39	
250	Characterization of water-insoluble oxidative potential of PM2.5 using the dithiothreitol assay. <i>Atmospheric Environment</i> , 2020 , 224, 117327	5.3	29	
249	Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1901-1920	6.8	32	
248	Evaluating a multipollutant metric for use in characterizing traffic-related air pollution exposures within near-road environments. <i>Environmental Research</i> , 2020 , 184, 109389	7.9	3	
247	Chemical characterization of secondary organic aerosol at a rural site in the southeastern US: insights from simultaneous high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and FIGAERO chemical ionization mass spectrometer (CIMS) measurements. <i>Atmospheric Chemistry</i>	6.8	16	
246	First Continuous Measurement of Gaseous and Particulate Formic Acid in a Suburban Area of East China: Seasonality and GasParticle Partitioning. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 157-167	3.2	5	
245	Fine particle pH and sensitivity to NH₃ and HNO₃ over summertime South Korea during KORUS-AQ 2020 ,		1	
244	Near-road Vehicle Emissions Air Quality Monitoring for Exposure Modeling. <i>Atmospheric Environment</i> , 2020 , 224, 117318-117318	5.3	9	
243	Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 1846-1861	4.4	22	
242	Effects of Water-soluble Organic Carbon on Aerosol pH 2019 ,		1	
241	Modeling global radiative effect of brown carbon: A larger heating source in the tropical free troposphere than black carbon 2019 ,		2	
240	Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 12054-12061	10.3	45	
239	Relationship between Atmospheric Aerosol Mineral Surface Area and Iron Solubility. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2443-2451	3.2	8	
238	Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	34	
237	Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. <i>Building and Environment</i> , 2019 , 160, 106209	6.5	58	
236	Effects of Atmospheric Processing on the Oxidative Potential of Biomass Burning Organic Aerosols. <i>Environmental Science & Environmental Science & Env</i>	10.3	30	
235	Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. <i>Environmental Science & Environmental Science </i>	10.3	161	

234	Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 7319-7334	6.8	57
233	Effects of water-soluble organic carbon on aerosol pH. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 146	667 814	52 9
232	The Acidity of Atmospheric Particles and Clouds 2019 ,		8
231	Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4345-4372	4.4	69
230	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2038-	2 043	117
229	Exploring the observational constraints on the simulation of brown carbon. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 635-653	6.8	80
228	Understanding nitrate formation in a world with less sulfate 2018,		2
227	Linked Response of Aerosol Acidity and Ammonia to SO and NO Emissions Reductions in the United States. <i>Environmental Science & Environmental Science </i>	10.3	28
226	Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8110-8115	11.5	86
225	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7771-7796	4.4	57
224	Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11471-1	64 <mark>8</mark> 1	55
223	Investigating particle emissions and aerosol dynamics from a consumer fused deposition modeling 3D printer with a lognormal moment aerosol model. <i>Aerosol Science and Technology</i> , 2018 , 52, 1099-111	3 ·4	18
222	High Aerosol Acidity Despite Declining Atmospheric Sulfate Concentrations: Lessons from Observations and Implications for Models. <i>Springer Proceedings in Complexity</i> , 2018 , 171-176	0.3	
221	Source Impacts on and Cardiorespiratory Effects of Reactive Oxygen Species Generated by Water-Soluble PM2.5 Across the Eastern United States. <i>Springer Proceedings in Complexity</i> , 2018 , 503-50)8·3	1
220	Characterization of Aerosol Composition, Aerosol Acidity and Organic Acid Partitioning at an Agriculture-Intensive Rural Southeastern U.S. Site 2018 ,		1
219	Oxidative Properties of Ambient Particulate Matter - An Assessment of the Relative Contributions from Various Aerosol Components and Their Emission Sources. <i>ACS Symposium Series</i> , 2018 , 389-416	0.4	2
218	Insights on Aerosol Oxidative Potential from Measurements of Particle Size Distributions. <i>ACS Symposium Series</i> , 2018 , 417-437	0.4	2
217	The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios. Atmospheric Chemistry and Physics, 2018, 18, 17307-17323	6.8	39

(2017-2018)

216	Evaluation of the Current Parameterization. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,994	4.4	24
215	Understanding nitrate formation in a world with less sulfate. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12765-12775	6.8	45
214	Real-time measurements of gas-phase organic acids using SF₆ chemical ionization mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 5087-5104	4	9
213	A Tribute to Peter McMurry. Aerosol Science and Technology, 2018, 52, 1083-1084	3.4	
212	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,36	5 8 ·4	32
211	Estimating Acute Cardiovascular Effects of Ambient PM Metals. <i>Environmental Health Perspectives</i> , 2018 , 126, 027007	8.4	30
210	Wintertime Gas-Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,897	4.4	16
209	Atmospheric Evolution of Molecular Weight Separated Brown Carbon from Biomass Burning 2018,		2
208	Effectiveness of ammonia reduction on control of fine particle nitrate. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12241-12256	6.8	78
207	Source impact modeling of spatiotemporal trends in PM2.5 oxidative potential across the eastern United States. <i>Atmospheric Environment</i> , 2018 , 193, 158-167	5.3	13
206	Source apportionment of organic carbon in Centreville, AL using organosulfates in organic tracer-based positive matrix factorization. <i>Atmospheric Environment</i> , 2018 , 186, 74-88	5.3	16
205	Developing Multipollutant Exposure Indicators of Traffic Pollution: The Dorm Room Inhalation to Vehicle Emissions (DRIVE) Study. <i>Research Report (health Effects Institute)</i> , 2018 , 3-75	0.9	4
204	Molecular-Size-Separated Brown Carbon Absorption for Biomass-Burning Aerosol at Multiple Field Sites. <i>Environmental Science & Environmental Science &</i>	10.3	49
203	Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 2611-2620	10.3	205
202	Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon. <i>Science of the Total Environment</i> , 2017 , 599-600, 1047-1055	10.2	64
201	Changes in Light Absorptivity of Molecular Weight Separated Brown Carbon Due to Photolytic Aging. <i>Environmental Science & Environmental Science & Env</i>	10.3	107
200	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. <i>Nature Geoscience</i> , 2017 , 10, 486-489	18.3	114
199	Ambient Size Distributions and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble Particles. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 6802-6811	10.3	63

198	Chemical Characterization of Water-Soluble Organic Aerosol in Contrasting Rural and Urban Environments in the Southeastern United States. <i>Environmental Science & Environmental Science & Environment</i>	10.3	58
197	High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production. <i>Scientific Reports</i> , 2017 , 7, 12109	4.9	115
196	A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 2821-2835	4	36
195	The underappreciated role of nonvolatile cations on aerosol ammonium-sulfate molar ratios 2017,		9
194	Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. <i>Environmental Health Perspectives</i> , 2017 , 125, 107008	8.4	57
193	Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign 2017 ,		1
192	Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study. <i>Atmospheric Chemistry and Physics</i> , 2017 , 16, 4897-4914	6.8	77
191	Characterization of particle emissions from consumer fused deposition modeling 3D printers. <i>Aerosol Science and Technology</i> , 2017 , 51, 1275-1286	3.4	70
190	Oxidative potential of PM2.5 during Atlanta rush hour: Measurements of in-vehicle dithiothreitol (DTT) activity. <i>Atmospheric Environment</i> , 2017 , 165, 169-178	5.3	31
189	Chemical and cellular oxidant production induced by naphthalene secondary organic aerosol (SOA): effect of redox-active metals and photochemical aging. <i>Scientific Reports</i> , 2017 , 7, 15157	4.9	21
188	On the implications of aerosol liquid water and phase separation for organic aerosol mass. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 343-369	6.8	122
187	Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 839-853	6.8	97
186	Fine particle pH and gasparticle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5703-5719	6.8	128
185	Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant plumes during Southeast Nexus. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 11,137-11,153	4.4	38
184	Composition and oxidation state of sulfur in atmospheric particulate matter. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13389-13398	6.8	12
183	Oxidative potential of ambient water-soluble PM_{2.5} in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3865-3879	6.8	151
182	Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4579-4591	6.8	115
181	Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 7383-7414	4.4	71

(2015-2016)

180	Real-Time, Online Automated System for Measurement of Water-Soluble Reactive Phosphate Ions in Atmospheric Particles. <i>Analytical Chemistry</i> , 2016 , 88, 7163-70	7.8	7	
179	High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience, 2016 , 9, 282-285	18.3	250	
178	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1516-21	11.5	195	
177	The characteristics of brown carbon aerosol during winter in Beijing. <i>Atmospheric Environment</i> , 2016 , 127, 355-364	5.3	140	
176	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355	4.4	129	
175	Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US. Atmospheric Environment, 2016 , 136, 95-104	5.3	19	
174	Ambient PM2.5 and Health: Does PM2.5 Oxidative Potential Play a Role?. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 194, 530-1	10.2	17	
173	Assessment of the sensitivity of core / shell parameters derived using the single-particle soot photometer to density and refractive index. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 1701-1718	4	67	
172	Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 4646-56	10.3	177	
171	Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. <i>Environmental Science & Environmental Science & Environ</i>	10.3	185	
170	Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity Assessing the importance of quinones and atmospheric aging. <i>Atmospheric Environment</i> , 2015 , 120, 357	1-339	77	
169	9 Evolution of brown carbon in wildfire plumes. <i>Geophysical Research Letters</i> , 2015 , 42, 4623-4630	4.9	206	
168	Fine-particle water and pH in the southeastern United States. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5211-5228	6.8	312	
16 7	On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8679-8694	6.8	69	
166	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1975-1993	6.8	45	
165	A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics, 2015 , 15, 2775-2790	6.8	203	
164	Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 2015, 15, 7307-7336	6.8	195	
163	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7841-7858	6.8	74	

162	PM_{2.5} water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11667-11682	6.8	70
161	Source apportionment of methane and nitrous oxide in Californiaß San Joaquin Valley at CalNex 2010 via positive matrix factorization. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 12043-12063	6.8	20
160	Biomass burning dominates brown carbon absorption in the rural southeastern United States. <i>Geophysical Research Letters</i> , 2015 , 42, 653-664	4.9	173
159	A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 471-482	4	94
158	Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 37-42	11.5	393
157	Characterization of selenium in ambient aerosols and primary emission sources. <i>Environmental Science & Environmental Science & Environmental Automatic Auto</i>	10.3	13
156	Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 6818-6835	4.4	70
155	Sources of primary and secondary organic aerosol and their diurnal variations. <i>Journal of Hazardous Materials</i> , 2014 , 264, 536-44	12.8	18
154	The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks. <i>Environmental Pollution</i> , 2014 , 185, 149-57	9.3	65
153	A yearlong study of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature. <i>Atmospheric Environment</i> , 2014 , 92, 514-521	5.3	92
152	Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 360	0 13 614	4 ⁴⁶
151	Brown carbon in the continental troposphere. <i>Geophysical Research Letters</i> , 2014 , 41, 2191-2195	4.9	92
150	Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12181-12194	6.8	99
149	Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10911-10930	6.8	62
148	Reactive oxygen species associated with water-soluble PM_{2.5} in the southeastern United States: spatiotemporal trends and source apportionment. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12915-12930	6.8	166
147	Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 1929-194	1 ⁴	55
146	A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE) 2014 ,		14
145	A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmospheric Environment, 2014 , 89, 235-241	5.3	120

144	Particulate and gas sampling of prescribed fires in South Georgia, USA. <i>Atmospheric Environment</i> , 2013 , 81, 125-135	5.3	17
143	Estimating the toxicity of ambient fine aerosols using freshwater rotifer Brachionus calyciflorus (Rotifera: Monogononta). <i>Environmental Pollution</i> , 2013 , 182, 379-84	9.3	24
142	Sources, composition and absorption ligstress exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin. <i>Environmental Science & Environmental Science & Environm</i>	93 ^{10.3}	264
141	Revising the use of potassium (K) in the source apportionment of PM2.5. <i>Atmospheric Pollution Research</i> , 2013 , 4, 14-21	4.5	83
140	Development and testing of an online method to measure ambient fine particulate reactive oxygen species (ROS) based on the 2P,7Pdichlorofluorescin (DCFH) assay. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 1647-1658	4	36
139	Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2735-2756	6.8	103
138	Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 12389-12404	6.8	191
137	Biomass burning contribution to Beijing aerosol. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7765-778	31 6.8	273
136	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9233-9257	4.4	201
135	Heterogeneous formation of nitryl chloride and its role as a nocturnal NOx reservoir species during CalNex-LA 2010. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 10,638	4.4	57
134	Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmospheric Environment, 2012, 55, 190	0-≩90	45
133	On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		50
132	Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. <i>Environmental Science & Environmental Sci</i>	10.3	205
131	Iron solubility related to particle sulfur content in source emission and ambient fine particles. <i>Environmental Science & Environmental Science & Env</i>	10.3	82
130	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	163
129	On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		45
128	Images reveal that atmospheric particles can undergo liquid-liquid phase separations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13188-93	11.5	166
127	Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9529-9543	6.8	58

126	Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10239-10255	6.8	43
125	Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: implications for secondary organic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6593-6607	6.8	67
124	Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 745-756	6.8	71
123	Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity and aerosol acidity. <i>Environmental Chemistry</i> , 2012 , 9, 247	3.2	51
122	Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. <i>Journal of Geophysical Research</i> , 2011 , 116,		75
121	Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	162
120	Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign. <i>Journal of Geophysical Research</i> , 2011 , 116,		45
119	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12049-12064	6.8	418
118	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12387-12420	6.8	111
117	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12673-12696	6.8	199
116	Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13325-13337	6.8	86
115	Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11497-11510	6.8	212
114	Filterable water-soluble organic nitrogen in fine particles over the southeastern USA during summer. <i>Atmospheric Environment</i> , 2011 , 45, 6040-6047	5.3	40
113	Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11069-11102	6.8	855
112	A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 2093-2103	4	65
111	Characterization of soluble iron in urban aerosols using near-real time data. <i>Journal of Geophysical Research</i> , 2010 , 115,		34
110	Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources. <i>Journal of Geophysical Research</i> , 2010 , 115,		126
109	Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City. <i>Journal of Geophysical Research</i> , 2010 , 115,		75

(2008-2010)

108	Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5965-5977	6.8	349
107	Biomass burning impact on PM_{2.5} over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 6839-6853	6.8	180
106	New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols. <i>Environmental Science & Environmental S</i>	10.3	25
105	Roadside, urban, and rural comparison of primary and secondary organic molecular markers in ambient PM2.5. <i>Environmental Science & Environmental Scie</i>	10.3	48
104	Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. <i>Journal of Geophysical Research</i> , 2009 , 114,		56
103	Carbonyl sulfide as an inverse tracer for biogenic organic carbon in gas and aerosol phases. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	11
102	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3425	-3442	97
101	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3027-3042	6.8	114
100	Gas/particle partitioning of water-soluble organic aerosol in Atlanta. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3613-3628	6.8	125
99	Evolution of Asian aerosols during transpacific transport in INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7257-7287	6.8	155
98	CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 8798-802	10.3	165
97	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. <i>Journal of Geophysical Research</i> , 2008 , 113,		41
96	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. <i>Journal of Geophysical Research</i> , 2008 , 113,		158
95	Enhanced secondary organic aerosol formation due to water uptake by fine particles. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	151
94	Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States. <i>Environmental Science & Environmental &</i>	10.3	125
93	Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?. <i>Environmental Science & Environmental & En</i>	10.3	18
92	Diagnosis of aged prescribed burning plumes impacting an urban area. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 1438-44	10.3	61
91	Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1). <i>Environmental Science & amp; Technology</i> , 2008 , 42, 7655	;- 62 .3	244

90	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2007-2025	6.8	81
89	On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 3761-3768	6.8	8o
88	Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 799-812	6.8	120
87	Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 183	5 ⁶ 1853	48
86	Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1249-1259	6.8	190
85	No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	52
84	Oxygenated and water-soluble organic aerosols in Tokyo. <i>Journal of Geophysical Research</i> , 2007 , 112,		223
83	A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. <i>Journal of Geophysical Research</i> , 2007 , 112,		446
82	Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States I fesults from NEAQS. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 3231-3247	6.8	47
81	Investigating a Liquid-Based Method for Online Organic Carbon Detection in Atmospheric Particles. <i>Aerosol Science and Technology</i> , 2007 , 41, 1117-1127	3.4	45
80	Variability in nocturnal nitrogen oxide processing and its role in regional air quality. <i>Science</i> , 2006 , 311, 67-70	33.3	297
79	Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin. <i>Journal of Geophysical Research</i> , 2006 , 111,		56
78	Chemical characterization of the ambient organic aerosol soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size-exclusion chromatography. <i>Journal of Geophysical Research</i> , 2006 , 111,		44
77	Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources. <i>Journal of Geophysical Research</i> , 2006 , 111,		163
76	Analysis of urban gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time Characterization Experiment (ANARChE). <i>Journal of Geophysical Research</i> , 2006 , 111,		80
75	Time-resolved measurements of water-soluble organic carbon in Tokyo. <i>Journal of Geophysical Research</i> , 2006 , 111,		149
74	Influence of Ohio River valley emissions on fine particle sulfate measured from aircraft over large regions of the eastern United States and Canada during INTEX-NA. <i>Journal of Geophysical Research</i> , 2006 , 111,		11
73	Single-particle mass spectrometry of tropospheric aerosol particles. <i>Journal of Geophysical Research</i> , 2006 , 111,		389

72	Concentrations and sources of organic carbon aerosols in the free troposphere over North America. <i>Journal of Geophysical Research</i> , 2006 , 111,		97
71	Characterization of water-soluble organic carbon in urban atmospheric aerosols using solid-state 13C NMR spectroscopy. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	123
70	Modeling and Characterization of a Particle-into-Liquid Sampler (PILS). <i>Aerosol Science and Technology</i> , 2006 , 40, 396-409	3.4	98
69	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1657-1732	6.8	115
68	Export efficiency of black carbon aerosol in continental outflow: Global implications. <i>Journal of Geophysical Research</i> , 2005 , 110,		154
67	Contribution of particulate nitrate to airborne measurements of total reactive nitrogen. <i>Journal of Geophysical Research</i> , 2005 , 110,		16
66	A large organic aerosol source in the free troposphere missing from current models. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	515
65	An Investigation into the Ionic Chemical Composition and Mixing State of Biomass Burning Particles Recorded During TRACE-P P3B Flight#10. <i>Journal of Atmospheric Chemistry</i> , 2005 , 51, 43-64	3.2	22
64	Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments. <i>Aerosol Science and Technology</i> , 2005 , 39, 760-770	3.4	166
63	ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution. <i>Bulletin of the American Meteorological Society</i> , 2004 , 85, 367-380	6.1	285
62	Spatial distribution and size evolution of particles in Asian outflow: Significance of primary and secondary aerosols during ACE-Asia and TRACE-P. <i>Journal of Geophysical Research</i> , 2004 , 109,		33
61	Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia. <i>Journal of Geophysical Research</i> , 2004 , 109,		24
60	Particle characteristics following cloud-modified transport from Asia to North America. <i>Journal of Geophysical Research</i> , 2004 , 109,		80
59	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004 , 109,		74
58	Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. <i>Journal of Geophysical Research</i> , 2004 , 109,		133
57	A three-dimensional regional modeling study of the impact of clouds on sulfate distributions during TRACE-P. <i>Journal of Geophysical Research</i> , 2004 , 109,		7
56	A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	199
55	Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. <i>Atmospheric Environment</i> , 2003 , 37, 1243-1259	5.3	314

54	Overview of the 1999 Atlanta Supersite Project. Journal of Geophysical Research, 2003, 108,		40
53	New particle formation in anthropogenic plumes advecting from Asia observed during TRACE-P. <i>Journal of Geophysical Research</i> , 2003 , 108,		45
52	Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. <i>Journal of Geophysical Research</i> , 2003 , 108,		81
51	Source signatures of carbon monoxide and organic functional groups in Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) submicron aerosol types. <i>Journal of Geophysical Research</i> , 2003 , 108,		140
50	Physical characterization of aerosol particles during nucleation events. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2001 , 53, 344-358	3.3	190
49	A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. <i>Aerosol Science and Technology</i> , 2001 , 35, 718-727	3.4	352
48	Measurements of enhanced H2SO4 and 3½ nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1). <i>Journal of Geophysical Research</i> , 2001 , 106, 24107-24117		74
47	White-light Detection for Nanoparticle Sizing with the TSI Ultrafine Condensation Particle Counter. Journal of Nanoparticle Research, 2000 , 2, 85-90	2.3	19
46	Size distributions of 3110 nm atmospheric particles: implications for nucleation mechanisms. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2000 , 358, 2625-26	4 ² 2	37
45	New Particle Formation in the Remote Troposphere: A Comparison of Observations at Various Sites. <i>Geophysical Research Letters</i> , 1999 , 26, 307-310	4.9	208
44	Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation. <i>Geophysical Research Letters</i> , 1999 , 26, 2425-2428	4.9	54
43	Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (~3🛮0nm) size distributions. <i>Journal of Aerosol Science</i> , 1998 , 29, 601-615	4.3	45
42	A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1. <i>Journal of Geophysical Research</i> , 1998 , 103, 16385-16396		157
41	Hydrates in binary sulfuric acid-water vapor: Comparison of CIMS measurements with the Liquid-Drop Model. <i>Geophysical Research Letters</i> , 1998 , 25, 3143-3146	4.9	16
40	Spurious aerosol measurements when sampling from aircraft in the vicinity of clouds. <i>Journal of Geophysical Research</i> , 1998 , 103, 28337-28346		64
39	Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters. <i>Aerosol Science and Technology</i> , 1997 , 27, 224-242	3.4	125
38	Measurements of the H2SO4 mass accommodation coefficient onto polydisperse aerosol. <i>Journal of Geophysical Research</i> , 1997 , 102, 19021-19028		72
37	Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. <i>Journal of Geophysical Research</i> , 1997 , 102, 4375-4385		356

36	Fine particle size distributions at the Mauna Loa Observatory, Hawaii. <i>Journal of Geophysical Research</i> , 1996 , 101, 14767-14775		36	
35	Ultrafine Aerosol Measurement Using a Condensation Nucleus Counter with Pulse Height Analysis. <i>Aerosol Science and Technology</i> , 1996 , 25, 200-213	3.4	84	
34	MEASURED ATMOSPHERIC NEW PARTICLE FORMATION RATES: IMPLICATIONS FOR NUCLEATION MECHANISMS. <i>Chemical Engineering Communications</i> , 1996 , 151, 53-64	2.2	315	
33	Modification of the TSI 3025 Condensation Particle Counter for Pulse Height Analysis. <i>Aerosol Science and Technology</i> , 1996 , 25, 214-218	3.4	24	
32	Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability		2	
31	Chemical Characterization of Secondary Organic Aerosol at a Rural Site in the Southeastern U.S.: Insights from Simultaneous HR-ToF-AMS and FIGAERO-CIMS Measurements		2	
30	Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen		2	
29	Biomass burning impact on PM _{2.5} over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis		5	
28	Brown carbon and water-soluble organic aerosols over the southeastern United States		3	
27	Comparison of the chemical evolution and characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign		2	
26	Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies		12	
25	Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China		3	
24	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model		6	
23	Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment		5	
22	Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008		2	
21	Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the Southeastern United States: implications for secondary organic aerosol formation		3	
20	Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts		3	
19	Biomass burning contribution to Beijing aerosol		5	

18	Atmospheric amines and ammonia measured with a Chemical Ionization Mass Spectrometer (CIMS)	4
17	Reactive oxygen species associated with water-soluble PM _{2.5} in the southeastern United States: spatiotemporal trends and source apportionment	12
16	Particle water and pH in the southeastern United States	17
15	A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles	3
14	Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates	5
13	PM _{2.5} water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies	5
12	Oxidative potential of ambient water-soluble PM _{2.5} measured by Dithiothreitol (DTT) and Ascorbic Acid (AA) assays in the southeastern United States: contrasts in sources and health associations	10
11	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing	5
10	Total Observed Organic Carbon (TOOC): A synthesis of North American observations	1
9	Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States I results from NEAQS	1
8	Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol	6
7	Source apportionment of fine organic aerosol in Mexico City during the MILAGRO Experiment 2006	8
6	Evolution of Asian aerosols during transpacific transport in INTEX-B	21
5	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study	1
4	On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City	3
3	Gas/particle partitioning of water-soluble organic aerosol in Atlanta	2
2	Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia	1
1	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region	1