
Pirta Hotulainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protrudin regulates FAK activation, endothelial cell migration and angiogenesis. Cellular and Molecular Life Sciences, 2022, 79, 220.	5.4	7
2	An action plan for pan-European defence against new SARS-CoV-2 variants. Lancet, The, 2021, 397, 469-470.	13.7	101
3	Carbonic anhydrase seven bundles filamentous actin and regulates dendritic spine morphology and density. EMBO Reports, 2021, 22, e50145.	4.5	5
4	The axonal radial contractility: Structural basis underlying a new form of neural plasticity. BioEssays, 2021, 43, e2100033.	2.5	5
5	Towards a European strategy to address the COVID-19 pandemic. Lancet, The, 2021, 398, 838-839.	13.7	36
6	Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells, 2021, 10, 2392.	4.1	21
7	A look into the future of the COVID-19 pandemic in Europe: an expert consultation. Lancet Regional Health - Europe, The, 2021, 8, 100185.	5.6	72
8	Tropomyosin Tpm3.1 Is Required to Maintain the Structure and Function of the Axon Initial Segment. IScience, 2020, 23, 101053.	4.1	21
9	NuMA1 facilitates the assembly of the axon initial segment by promoting the retention of neurofascin-186. Journal of Cell Biology, 2020, 219, .	5.2	1
10	Chemical LTD, but not LTP, induces transient accumulation of gelsolin in dendritic spines. Biological Chemistry, 2019, 400, 1129-1139.	2.5	5
11	Sub-membranous actin rings in the axon initial segment are resistant to the action of latrunculin. Biological Chemistry, 2019, 400, 1141-1146.	2.5	13
12	MIM-Deficient Mice Exhibit Anatomical Changes in Dendritic Spines, Cortex Volume and Brain Ventricles, and Functional Changes in Motor Coordination and Learning. Frontiers in Molecular Neuroscience, 2019, 12, 276.	2.9	14
13	Longitudinal two-photon imaging in somatosensory cortex of behaving mice reveals dendritic spine formation enhancement by subchronic administration of low-dose ketamine. Scientific Reports, 2018, 8, 6464.	3.3	36
14	Dendritic spine actin cytoskeleton in autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 362-381.	4.8	58
15	ASD-Associated De Novo Mutations in Five Actin Regulators Show Both Shared and Distinct Defects in Dendritic Spines and Inhibitory Synapses in Cultured Hippocampal Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 217.	3.7	20
16	New waves in dendritic spine actin cytoskeleton: From branches and bundles to rings, from actin binding proteins to post-translational modifications. Molecular and Cellular Neurosciences, 2017, 84, 77-84.	2.2	25
17	DHCR24 exerts neuroprotection upon inflammation-induced neuronal death. Journal of Neuroinflammation, 2017, 14, 215.	7.2	34
18	Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity. Journal of Neuroscience, 2016, 36, 5299-5313.	3.6	35

Pirta Hotulainen

#	Article	IF	CITATIONS
19	Cytoskeletal Organization: Actin. , 2016, , 9-29.		2
20	The initiation of post-synaptic protrusions. Communicative and Integrative Biology, 2016, 9, e1125053.	1.4	3
21	Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. Cytoskeleton, 2016, 73, 435-441.	2.0	84
22	MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Developmental Cell, 2015, 33, 644-659.	7.0	84
23	KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. Journal of Cell Biology, 2015, 209, 671-686.	5.2	97
24	KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. Journal of Experimental Medicine, 2015, 212, 21270IA56.	8.5	0
25	Measuring F-actin properties in dendritic spines. Frontiers in Neuroanatomy, 2014, 8, 74.	1.7	44
26	Myosin IIb controls actin dynamics underlying the dendritic spine maturation. Molecular and Cellular Neurosciences, 2014, 61, 56-64.	2.2	51
27	Methods to Measure Actin Treadmilling Rate in Dendritic Spines. Methods in Enzymology, 2012, 505, 47-58.	1.0	26
28	Methods for Three-Dimensional Analysis of Dendritic Spine Dynamics. Methods in Enzymology, 2012, 506, 391-406.	1.0	14
29	A Molecular Pathway for Myosin II Recruitment to Stress Fibers. Current Biology, 2011, 21, 539-550.	3.9	235
30	Actin in dendritic spines: connecting dynamics to function. Journal of Cell Biology, 2010, 189, 619-629.	5.2	691
31	Actin in dendritic spines: connecting dynamics to function. Journal of Experimental Medicine, 2010, 207, i18-i18.	8.5	2
32	Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. Journal of Cell Biology, 2009, 185, 323-339.	5.2	305
33	Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. Journal of Cell Science, 2009, 122, 2119-2126.	2.0	98
34	Characterization of the interaction between Actinin-Associated LIM Protein (ALP) and the rod domain of α-actinin. BMC Cell Biology, 2009, 10, 22.	3.0	17
35	Mechanisms of actin stress fibre assembly. Journal of Microscopy, 2008, 231, 446-454.	1.8	195
36	Regulation of the Actin Cytoskeleton by Phospholipids. Advances in Molecular and Cell Biology, 2006, 37, 201-219.	0.1	0

3

Pirta Hotulainen

#	Article	IF	CITATIONS
37	Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. Journal of Cell Biology, 2006, 173, 383-394.	5.2	784
38	Actin-depolymerizing Factor and Cofilin-1 Play Overlapping Roles in Promoting Rapid F-Actin Depolymerization in Mammalian Nonmuscle Cells. Molecular Biology of the Cell, 2005, 16, 649-664.	2.1	338
39	Cyclase-associated Protein 1 (CAP1) Promotes Cofilin-induced Actin Dynamics in Mammalian Nonmuscle Cells. Molecular Biology of the Cell, 2004, 15, 2324-2334.	2.1	189
40	SWAP-70 Identifies a Transitional Subset of Actin Filaments in Motile Cells. Molecular Biology of the Cell, 2003, 14, 3242-3253.	2.1	39
41	Functional role for the class IX myosin myr5 in epithelial cell infection by Shigella flexneri. Cellular Microbiology, 2000, 2, 601-616.	2.1	18
42	Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2305-2310.	7.1	304
43	Clinical and genetic heterogeneity in autosomal recessive nemaline myopathy. Neuromuscular Disorders, 1999, 9, 564-572.	0.6	84