
Christian Löw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546814/publications.pdf Version: 2024-02-01

<u>Chdistian | öω</u>

#	Article	IF	CITATIONS
1	Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nature Reviews Molecular Cell Biology, 2016, 17, 123-132.	16.1	376
2	A saposin-lipoprotein nanoparticle system for membrane proteins. Nature Methods, 2016, 13, 345-351.	9.0	209
3	Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nature Communications, 2020, 11, 5588.	5.8	132
4	Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nature Structural and Molecular Biology, 2013, 20, 766-768.	3.6	126
5	Structural insights into substrate recognition in protonâ€dependent oligopeptide transporters. EMBO Reports, 2013, 14, 804-810.	2.0	109
6	Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2. Nature Structural and Molecular Biology, 2014, 21, 728-731.	3.6	93
7	High-throughput stability screening for detergent-solubilized membrane proteins. Scientific Reports, 2019, 9, 10379.	1.6	79
8	Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research. Structure, 2018, 26, 345-355.e5.	1.6	69
9	Multispecific Substrate Recognition in a Proton-Dependent Oligopeptide Transporter. Structure, 2018, 26, 467-476.e4.	1.6	67
10	Crystal Structure Determination and Functional Characterization of the Metallochaperone SlyD from Thermus thermophilus. Journal of Molecular Biology, 2010, 398, 375-390.	2.0	60
11	Structure of Prototypic Peptide Transporter DtpA from <i>E. coli</i> in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. Journal of the American Chemical Society, 2019, 141, 2404-2412.	6.6	51
12	Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes. Science Advances, 2021, 7, eabk3259.	4.7	47
13	Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. MBio, 2019, 10, .	1.8	46
14	Inâ€depth interrogation of protein thermal unfolding data with <scp>MoltenProt</scp> . Protein Science, 2021, 30, 201-217.	3.1	36
15	Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121. PLoS ONE, 2017, 12, e0173126.	1.1	35
16	High-throughput analytical gel filtration screening of integral membrane proteins for structural studies. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3497-3508.	1.1	29
17	Molecular basis of mRNA transport by a kinesin-1–atypical tropomyosin complex. Genes and Development, 2021, 35, 976-991.	2.7	29
18	Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD. BMC Biology, 2016, 14, 82.	1.7	26

Christian Löw

#	Article	IF	CITATIONS
19	Tripeptide binding in a protonâ€dependent oligopeptide transporter. FEBS Letters, 2018, 592, 3239-3247.	1.3	22
20	Structural Insights Into PfARO and Characterization of its Interaction With PfAIP. Journal of Molecular Biology, 2020, 432, 878-896.	2.0	21
21	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie - International Edition, 2020, 59, 19121-19128.	7.2	21
22	Singleâ€Molecule FRET of Membrane Transport Proteins. ChemBioChem, 2021, 22, 2657-2671.	1.3	21
23	NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 873-881.	1.1	20
24	Optimisation of Over-Expression in E. coli and Biophysical Characterisation of Human Membrane Protein Synaptogyrin 1. PLoS ONE, 2012, 7, e38244.	1.1	20
25	Nanobody Mediated Crystallization of an Archeal Mechanosensitive Channel. PLoS ONE, 2013, 8, e77984.	1.1	20
26	Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite <scp> <i>Plasmodium falciparum</i> </scp> . Cellular Microbiology, 2021, 23, e13341.	1.1	19
27	Structural and Biochemical Characterization of Human PR70 in Isolation and in Complex with the Scaffolding Subunit of Protein Phosphatase 2A. PLoS ONE, 2014, 9, e101846.	1.1	14
28	Lipidâ€like Peptides can Stabilize Integral Membrane Proteins for Biophysical and Structural Studies. ChemBioChem, 2017, 18, 1735-1742.	1.3	11
29	Highâ€resolution insights into binding of unfolded polypeptides by the PPIase chaperone SlpA. FASEB Journal, 2012, 26, 4003-4013.	0.2	10
30	Transient Expression of Recombinant Membrane-eGFP Fusion Proteins in HEK293 Cells. Methods in Molecular Biology, 2018, 1850, 17-31.	0.4	10
31	Probing the Architecture of a Multi-PDZ Domain Protein: Structure of PDZK1 in Solution. Structure, 2018, 26, 1522-1533.e5.	1.6	10
32	Structural role of essential light chains in the apicomplexan glideosome. Communications Biology, 2020, 3, 568.	2.0	10
33	Metal-mediated crystallization of the xylose transporter XylE from Escherichia coli in three different crystal forms. Journal of Structural Biology, 2013, 184, 375-378.	1.3	7
34	PMRT1, a <i>Plasmodium</i> -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio, 2022, 13, e0062322.	1.8	7
35	Characterization of the complex of the lysosomal membrane transporter MFSD1 and its accessory subunit GLMP. FASEB Journal, 2020, 34, 14695-14709.	0.2	6
36	Cryo-EM Structure of an Atypical Proton-Coupled Peptide Transporter: Di- and Tripeptide Permease C. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6

Christian Löw

#	Article	IF	CITATIONS
37	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie, 2020, 132, 19283-19290.	1.6	3
38	Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif. Journal of Biological Chemistry, 2021, 297, 101175.	1.6	3
39	Moltenprot: A High-Throughput Analysis Platform to Assess Thermodynamic Stability of Membrane Proteins and Complexes. Biophysical Journal, 2019, 116, 191a.	0.2	2
40	N-terminal phosphorylation regulates the activity of glycogen synthase kinase 3 from <i>Plasmodium falciparum</i> . Biochemical Journal, 2022, 479, 337-356.	1.7	2
41	Completing the family of human Eps15 homology domains: Solution structure of the internal Eps15 homology domain of $\hat{I}^{3}\hat{e}$ synergin. Protein Science, 2022, 31, 811-821.	3.1	1
42	Impact of distant peptide substrate residues on enzymatic activity of SlyD. Cellular and Molecular Life Sciences, 2022, 79, 138.	2.4	1
43	Rücktitelbild: Membrane Chemistry Tunes the Structure of a Peptide Transporter (Angew. Chem.) Tj ETQq1 1 0	.784314 r 1.6	gBT /Overlo