Ari B Molofsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546598/publications.pdf Version: 2024-02-01

ADI R MOLOFSKY

#	Article	IF	CITATIONS
1	Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity, 2022, 55, 254-271.e7.	14.3	30
2	Bile acid–sensitive tuft cells regulate biliary neutrophil influx. Science Immunology, 2022, 7, eabj1080.	11.9	23
3	ILC2s – development, divergence, dispersal. Current Opinion in Immunology, 2022, 75, 102168.	5.5	6
4	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	2.9	3
5	Perivascular stromal cells: Directors of tissue immune niches. Immunological Reviews, 2021, 302, 10-31.	6.0	14
6	Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. ELife, 2021, 10, .	6.0	41
7	Early-life inflammation primes a T helper 2 cell–fibroblast niche in skin. Nature, 2021, 599, 667-672.	27.8	40
8	Tissue immunity broadcasts near and far. Nature Reviews Immunology, 2020, 20, 93-94.	22.7	5
9	Gli1+ mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the fibrotic lung. Nature Cell Biology, 2020, 22, 1295-1306.	10.3	62
10	Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell, 2020, 182, 388-403.e15.	28.9	337
11	Immune outposts in the adventitia: One foot in sea and one on shore. Current Opinion in Immunology, 2020, 64, 34-41.	5.5	8
12	Adventitial Cuffs: Regional Hubs for Tissue Immunity. Trends in Immunology, 2019, 40, 877-887.	6.8	35
13	Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury. Frontiers in Immunology, 2019, 10, 826.	4.8	25
14	Nur77 Links Chronic Antigen Stimulation to B Cell Tolerance by Restricting the Survival of Self-Reactive B Cells in the Periphery. Journal of Immunology, 2019, 202, 2907-2923.	0.8	29
15	Adventitial Stromal Cells Define Group 2 Innate Lymphoid Cell Tissue Niches. Immunity, 2019, 50, 707-722.e6.	14.3	234
16	Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359, 1269-1273.	12.6	422
17	B Lymphoblastic Leukemia/Lymphoma With Burkitt-like Morphology and IGH/MYC Rearrangement. American Journal of Surgical Pathology, 2018, 42, 269-276.	3.7	26
18	Tissue signals imprint ILC2 identity with anticipatory function. Nature Immunology, 2018, 19, 1093-1099.	14.5	329

ARI B MOLOFSKY

#	Article	IF	CITATIONS
19	All along the watchtower: group 2 innate lymphoid cells in allergic responses. Current Opinion in Immunology, 2018, 54, 13-19.	5.5	15
20	The Skinny: Pancreatic ILC2s Promote Insulin Secretion. Immunity, 2017, 47, 812-814.	14.3	0
21	Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells. European Journal of Immunology, 2016, 46, 1315-1325.	2.9	34
22	A tissue checkpoint regulates type 2 immunity. Nature Immunology, 2016, 17, 1381-1387.	14.5	184
23	A worm of one's own: how helminths modulate host adipose tissue function and metabolism. Trends in Parasitology, 2015, 31, 435-441.	3.3	37
24	Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis. Cell, 2015, 160, 74-87.	28.9	565
25	Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 2015, 42, 1005-1019.	14.3	492
26	Interleukin-33 and Interferon-Î ³ Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation. Immunity, 2015, 43, 161-174.	14.3	368
27	Peripheral T-Cell Lymphoma, Not Otherwise Specified Presenting as Erythroderma. , 2014, 19, 221-226.		0
28	Chitin Activates Parallel Immune Modules that Direct Distinct Inflammatory Responses via Innate Lymphoid Type 2 and γδT Cells. Immunity, 2014, 40, 414-424.	14.3	221
29	Interleukin-5–producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood, 2014, 124, 3572-3576.	1.4	100
30	Type 2 innate lymphoid cells control eosinophil homeostasis. Nature, 2013, 502, 245-248.	27.8	861
31	Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. Journal of Experimental Medicine, 2013, 210, 535-549.	8.5	741
32	Two septic transfusion reactions presenting as transfusion-related acute lung injury from a split plateletpheresis unit. Critical Care Medicine, 2012, 40, 2488-2491.	0.9	13
33	Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis. Science, 2011, 332, 243-247.	12.6	1,156
34	Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. Journal of Experimental Medicine, 2006, 203, 1093-1104.	8.5	452
35	Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. Journal of Cell Biology, 2006, 173, i4-i4.	5.2	1
36	Autophagy and Inflammatory Cell Death, Partners of Innate Immunity. Autophagy, 2005, 1, 174-176.	9.1	48

ARI B MOLOFSKY

#	Article	IF	CITATIONS
37	Components of the Legionella pneumophila Flagellar Regulon Contribute to Multiple Virulence Traits, Including Lysosome Avoidance and Macrophage Death. Infection and Immunity, 2005, 73, 5720-5734.	2.2	93
38	The Functions of Klarsicht and Nuclear Lamin in Developmentally Regulated Nuclear Migrations of Photoreceptor Cells in the Drosophila Eye. Molecular Biology of the Cell, 2004, 15, 600-610.	2.1	151
39	Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Molecular Microbiology, 2004, 53, 29-40.	2.5	314
40	Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Molecular Microbiology, 2003, 50, 445-461.	2.5	209
41	Inflammatory Immune Response to Cytosolic Flagellin Protects Mice from Legionella pneumophila Infection. , 0, , 313-320.		Ο