Ye Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546553/publications.pdf

Version: 2024-02-01

290	28,361 citations	91	156
papers		h-index	g-index
318	318	318	22631
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation. Fuel, 2022, 309, 122105.	3.4	44
2	Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels. CheM, 2022, 8, 1050-1066.	5.8	26
3	Tandem catalysis with double-shelled hollow spheres. Nature Materials, 2022, 21, 572-579.	13.3	65
4	Selective Electrooxidation of Biomassâ€Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickelâ€Oxideâ€Supported Ruthenium Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	125
5	Selective Electrooxidation of Biomassâ€Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickelâ€Oxideâ€Supported Ruthenium Singleâ€Atom Catalyst. Angewandte Chemie, 2022, 134, .	1.6	41
6	Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO2 on carbon nitride as a heterostructured catalyst. Applied Catalysis B: Environmental, 2022, 309, 121268.	10.8	22
7	Structural dynamics of Ru clusters during nitrogen dissociation in ammonia synthesis. Physical Chemistry Chemical Physics, 2022, 24, 10820-10825.	1.3	6
8	Upcycling Plastic Wastes into Valueâ€Added Products by Heterogeneous Catalysis. ChemSusChem, 2022, 15, .	3.6	29
9	Low-temperature liquid reflux synthesis of core@shell structured Ni@Fe-doped NiCo nanoparticles decorated on carbon nanotubes as a bifunctional electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 13088-13096.	5.2	7
10	Cover Feature: Upcycling Plastic Wastes into Valueâ€Added Products by Heterogeneous Catalysis (ChemSusChem 14/2022). ChemSusChem, 2022, 15, .	3.6	2
11	Plastic Waste Valorization by Leveraging Multidisciplinary Catalytic Technologies. ACS Catalysis, 2022, 12, 9307-9324.	5 . 5	47
12	Distance for Communication between Metal and Acid Sites for Syngas Conversion. ACS Catalysis, 2022, 12, 8793-8801.	5.5	31
13	Selective Transformation of Methanol to Ethanol in the Presence of Syngas over Composite Catalysts. ACS Catalysis, 2022, 12, 8451-8461.	5. 5	9
14	Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion. Catalysis Today, 2021, 371, 85-92.	2.2	28
15	Nickel and indium core-shell co-catalysts loaded silicon nanowire arrays for efficient photoelectrocatalytic reduction of CO2 to formate. Journal of Energy Chemistry, 2021, 54, 422-428.	7.1	38
16	Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions. Journal of Catalysis, 2021, 394, 181-192.	3.1	38
17	Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angewandte Chemie, 2021, 133, 4762-4769.	1.6	7
18	Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angewandte Chemie - International Edition, 2021, 60, 4712-4719.	7.2	54

#	Article	IF	CITATIONS
19	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	15.6	110
20	Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Science Advances, 2021, 7, .	4.7	43
21	Functionalized Carbon Materials in Syngas Conversion. Small, 2021, 17, e2007527.	5.2	29
22	Selective hydrogenation of CO2 and CO into olefins over Sodium- and Zinc-Promoted iron carbide catalysts. Journal of Catalysis, 2021, 395, 350-361.	3.1	58
23	Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 2021, 4, 242-250.	16.1	308
24	Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal of CO2 Utilization, 2021, 45, 101405.	3.3	51
25	Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nature Communications, 2021, 12, 2305.	5.8	45
26	Size-Sensitive Dynamic Catalysis of Subnanometer Cu Clusters in CO ₂ Dissociation. Journal of Physical Chemistry Letters, 2021, 12, 3891-3897.	2.1	13
27	Photocatalytic Câ^'H activation and Câ^'C coupling of monohydric alcohols. Catalysis Communications, 2021, 153, 106300.	1.6	13
28	CoSe ₂ Nanoparticles Dispersed in WSe ₂ Nanosheets for Efficient Electrocatalysis and Supercapacitance Applications. ACS Applied Nano Materials, 2021, 4, 5796-5807.	2.4	33
29	Visualizing Element Migration over Bifunctional Metalâ€Zeolite Catalysts and its Impact on Catalysis. Angewandte Chemie, 2021, 133, 17876-17884.	1.6	53
30	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	11,1	106
31	Visualizing Element Migration over Bifunctional Metalâ€Zeolite Catalysts and its Impact on Catalysis. Angewandte Chemie - International Edition, 2021, 60, 17735-17743.	7.2	99
32	The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nature Communications, 2021, 12, 4331.	5.8	83
33	Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nature Communications, 2021, 12, 4679.	5.8	226
34	Solar energy-driven Câ^'H activation of methanol for direct Câ^'C coupling to ethylene glycol with high stability by nitrogen doped tantalum oxide. Chinese Journal of Catalysis, 2021, 42, 1459-1467.	6.9	20
35	Direct and selective methanation of biomass via oxygen vacancy-mediated catalysis. Chinese Journal of Catalysis, 2021, 42, 2091-2093.	6.9	1
36	Pore-mouth catalysis boosting the formation of iso-paraffins from syngas over bifunctional catalysts. Chinese Journal of Catalysis, 2021, 42, 2197-2205.	6.9	14

#	Article	IF	CITATIONS
37	Electrocatalytic reduction of CO ₂ and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50, 12897-12914.	18.7	266
38	Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature. Nature Communications, 2021, 12, 5814.	5.8	37
39	Selective Hydrogenation of CO ₂ to Ethanol over Sodium-Modified Rhodium Nanoparticles Embedded in Zeolite Silicalite-1. Journal of Physical Chemistry C, 2021, 125, 24429-24439.	1.5	31
40	Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C–C bonds under simulated solar light. Green Chemistry, 2021, 23, 10071-10078.	4.6	30
41	Functionalized Carbon Materials in Syngas Conversion (Small 48/2021). Small, 2021, 17, 2170256.	5.2	6
42	Relay catalysis in the conversion of syngas. Chinese Science Bulletin, 2021, 66, 1157-1169.	0.4	2
43	Charge State Dependence of Phase Transition Catalysis of Dynamic Cu Clusters in CO ₂ Dissociation. Journal of Physical Chemistry C, 2021, 125, 27615-27623.	1.5	2
44	Hydrothermal synthesis of long-chain hydrocarbons up to C $<$ sub $>$ 24 $<$ /sub $>$ with NaHCO $<$ sub $>$ 3 $<$ /sub $>$ -assisted stabilizing cobalt. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
45	C–H activations of methanol and ethanol and C–C couplings into diols by zinc–indium–sulfide under visible light. Chemical Communications, 2020, 56, 1776-1779.	2.2	59
46	Highly Active ZnO-ZrO ₂ Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catalysis, 2020, 10, 302-310.	5.5	216
47	Frontispiz: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, .	1.6	0
48	Stabilization of Îμ-iron carbide as high-temperature catalyst under realistic Fischer–Tropsch synthesis conditions. Nature Communications, 2020, 11, 6219.	5.8	83
49	Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. Advances in Catalysis, 2020, , 1-108.	0.1	9
50	Critical Roles of Doping Cl on Cu ₂ O Nanocrystals for Direct Epoxidation of Propylene by Molecular Oxygen. Journal of the American Chemical Society, 2020, 142, 14134-14141.	6.6	51
51	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374
52	Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide. CheM, 2020, 6, 3038-3053.	5.8	112
53	Frontispiece: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, .	7.2	5
54	Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nature Catalysis, 2020, 3, 478-487.	16.1	788

#	Article	IF	Citations
55	Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311.	5.5	4
56	Direct conversion of syngas into aromatics over a bifunctional catalyst: inhibiting net CO ₂ release. Chemical Communications, 2020, 56, 5239-5242.	2.2	30
57	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19450-19459.	7.2	221
58	Tandem Catalysis for Hydrogenation of CO and CO ₂ to Lower Olefins with Bifunctional Catalysts Composed of Spinel Oxide and SAPO-34. ACS Catalysis, 2020, 10, 8303-8314.	5.5	157
59	Understanding Catalytic Mechanisms of Alkane Oxychlorination from the Perspective of Energy Levels. Journal of Physical Chemistry C, 2020, 124, 6070-6077.	1.5	7
60	Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nature Communications, 2020, 11, 827.	5.8	156
61	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19618-19627.	1.6	47
62	Tunable localized surface plasmon resonances in MoO3â°'-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light. Chinese Journal of Catalysis, 2020, 41, 1125-1131.	6.9	43
63	In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability. Applied Catalysis B: Environmental, 2020, 276, 119142.	10.8	61
64	Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. Journal of Energy Chemistry, 2019, 32, 138-151.	7.1	74
65	Zirconia-supported rhenium oxide as an efficient catalyst for the synthesis of biomass-based adipic acid ester. Chemical Communications, 2019, 55, 11017-11020.	2.2	40
66	Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light. ACS Catalysis, 2019, 9, 8443-8451.	5.5	128
67	Visibleâ€Lightâ€Driven Cleavage of Câ^'O Linkage for Lignin Valorization to Functionalized Aromatics. ChemSusChem, 2019, 12, 5023-5031.	3.6	86
68	Investigation of the Electronic Structure of CdS Nanoparticles with Sum Frequency Generation and Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 27712-27716.	1.5	12
69	Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols. Molecular Catalysis, 2019, 479, 110610.	1.0	15
70	Photoelectrocatalytic reduction of CO ₂ to syngas over Ag nanoparticle modified p-Si nanowire arrays. Nanoscale, 2019, 11, 12530-12536.	2.8	36
71	Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles. Chemical Communications, 2019, 55, 8013-8016.	2.2	41
72	New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO ₂ into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48, 3193-3228.	18.7	742

#	Article	IF	CITATIONS
73	Copper–cobalt catalysts supported on mechanically mixed HZSM-5 and γ-Al2O3 for higher alcohols synthesis via carbon monoxide hydrogenation. RSC Advances, 2019, 9, 14592-14598.	1.7	7
74	Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Research, 2019, 12, 2313-2317.	5.8	86
75	Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles. Chemical Communications, 2019, 55, 4303-4306.	2.2	54
76	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	5.8	446
77	Selective Conversion of Syngas to Aromatics over a Moâ^'ZrO ₂ /Hâ€ZSMâ€5 Bifunctional Catalyst. ChemCatChem, 2019, 11, 1681-1688.	1.8	50
78	Oxidative Dehydrogenation of Propane to Propylene in the Presence of HCl Catalyzed by CeO ₂ and NiO-Modified CeO ₂ Nanocrystals. ACS Catalysis, 2018, 8, 4902-4916.	5.5	95
79	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
80	Selective electrocatalytic conversion of methane to fuels and chemicals. Journal of Energy Chemistry, 2018, 27, 1629-1636.	7.1	97
81	Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(<scp>iii⟨scp>)â€"Sn(<scp>ii⟨scp>) catalysts. Green Chemistry, 2018, 20, 735-744.</scp></scp>	4.6	109
82	Hybrid Au–Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2018, 140, 864-867.	6.6	210
83	Catalytic Transformation of Cellulose and Its Derivatives into Functionalized Organic Acids. ChemSusChem, 2018, 11, 1995-2028.	3.6	71
84	Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins <i>via</i> methanol/dimethyl ether intermediates. Chemical Science, 2018, 9, 4708-4718.	3.7	208
85	Catalytic amino acid production from biomass-derived intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5093-5098.	3.3	168
86	Visible light-driven Câ^'H activation and C–C coupling of methanol into ethylene glycol. Nature Communications, 2018, 9, 1181.	5.8	188
87	Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa ₂ O ₄ and SAPO-34. Chemical Communications, 2018, 54, 140-143.	2.2	265
88	Ethanol synthesis from syngas over Cu(Pd)-doped Fe(100): a systematic theoretical investigation. Physical Chemistry Chemical Physics, 2018, 20, 2492-2507.	1.3	21
89	TiO ₂ -based heterojunction photocatalysts for photocatalytic reduction of CO ₂ into solar fuels. Journal of Materials Chemistry A, 2018, 6, 22411-22436.	5.2	195
90	Room-Temperature Conversion of Methane Becomes True. Joule, 2018, 2, 1399-1401.	11.7	14

#	Article	IF	CITATIONS
91	Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nature Catalysis, 2018, 1, 772-780.	16.1	442
92	Reaction Mechanisms of Wellâ€Defined Metal–N ₄ Sites in Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 16577-16580.	1.6	44
93	Reaction Mechanisms of Wellâ€Defined Metal–N ₄ Sites in Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 16339-16342.	7.2	328
94	Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 2018, 1, 787-793.	16.1	300
95	Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie - International Edition, 2018, 57, 12012-12016.	7.2	142
96	Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie, 2018, 130, 12188-12192.	1.6	17
97	Photocatalysis: Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure (Small 21/2018). Small, 2018, 14, 1870096.	5.2	3
98	Photocatalytic coupling of formaldehyde to ethylene glycol and glycolaldehyde over bismuth vanadate with controllable facets and cocatalysts. Catalysis Science and Technology, 2017, 7, 923-933.	2.1	30
99	CO Dissociation Mechanism on Pd-Doped Fe(100): Comparison with Cu/Fe(100). Journal of Physical Chemistry C, 2017, 121, 6820-6834.	1.5	8
100	Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale, 2017, 9, 2963-2968.	2.8	85
101	Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas. Journal of Energy Chemistry, 2017, 26, 608-615.	7.1	37
102	Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Catalysis Science and Technology, 2017, 7, 1996-2000.	2.1	19
103	Metal-free, robust, and regenerable 3D graphene–organics aerogel with high and stable photosensitization efficiency. Journal of Catalysis, 2017, 346, 21-29.	3.1	86
104	Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis. Science China Chemistry, 2017, 60, 1382-1385.	4.2	15
105	Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catalysis Science and Technology, 2017, 7, 3598-3612.	2.1	54
106	Finely Composition-Tunable Synthesis of Ultrafine Wavy PtRu Nanowires as Effective Electrochemical Sensors for Dopamine Detection. Langmuir, 2017, 33, 8070-8075.	1.6	25
107	Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. CheM, 2017, 3, 334-347.	5.8	377
108	Engineering Interface with One-Dimensional Co ₃ O ₄ Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. ACS Nano, 2017, 11, 12365-12377.	7.3	103

#	Article	IF	Citations
109	Advances in Catalysis for Syngas Conversion to Hydrocarbons. Advances in Catalysis, 2017, , 125-208.	0.1	64
110	Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie - International Edition, 2016, 55, 4725-4728.	7.2	468
111	Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer–Tropsch Catalysts for Selective Synthesis of Diesel Fuel. Industrial & Engineering Chemistry Research, 2016, 55, 13008-13019.	1.8	42
112	Production of organic acids from biomass resources. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 54-58.	3.2	49
113	The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 2016, 337, 260-271.	3.1	72
114	Pyrolysis of Metal–Organic Frameworks to Fe ₃ O ₄ @Fe ₅ C ₂ Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 2016, 6, 3610-3618.	5.5	138
115	Carbon nanotube-supported Au–Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines. Chemical Communications, 2016, 52, 6805-6808.	2.2	40
116	Direct conversion of formaldehyde to ethylene glycol via photocatalytic carbon–carbon coupling over bismuth vanadate. Catalysis Science and Technology, 2016, 6, 6485-6489.	2.1	20
117	Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie, 2016, 128, 4803-4806.	1.6	115
118	A new horizontal in C1 chemistry: Highly selective conversion of syngas to light olefins by a novel OX-ZEO process. Journal of Energy Chemistry, 2016, 25, 169-170.	7.1	20
119	Mesoporous H-ZSM-5 as an efficient catalyst for conversions of cellulose and cellobiose into methyl glucosides in methanol. Catalysis Today, 2016, 274, 60-66.	2.2	23
120	Photocatalytic and photoelectrocatalytic reduction of CO ₂ using heterogeneous catalysts with controlled nanostructures. Chemical Communications, 2016, 52, 35-59.	2.2	508
121	Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts. Journal of Catalysis, 2015, 328, 139-150.	3.1	151
122	Impact of Hydrogenolysis on the Selectivity of the Fischer–Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeoliteâ€Yâ€Supported Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 4553-4556.	7.2	195
123	SrNb ₂ O ₆ nanoplates as efficient photocatalysts for the preferential reduction of CO ₂ in the presence of H ₂ O. Chemical Communications, 2015, 51, 3430-3433.	2.2	44
124	Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 502, 204-214.	2.2	78
125	Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline–TiO ₂ nanocomposites. Chemical Communications, 2015, 51, 13654-13657.	2.2	35
126	Functionalized Carbon Nanotubes for Biomass Conversion: The Baseâ€Free Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst. ChemCatChem, 2015, 7, 2853-2863.	1.8	113

#	Article	IF	CITATIONS
127	Oxidative conversion of lignin and lignin model compounds catalyzed by CeO ₂ -supported Pd nanoparticles. Green Chemistry, 2015, 17, 5009-5018.	4.6	210
128	Selective activation of the C–O bonds in lignocellulosic biomass for the efficient production of chemicals. Chinese Journal of Catalysis, 2015, 36, 1440-1460.	6.9	47
129	Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C C bond cleavage. Journal of Energy Chemistry, 2015, 24, 595-607.	7.1	55
130	Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid. Science China Chemistry, 2015, 58, 29-46.	4.2	76
131	Selective Transformation of Syngas into Gasolineâ€Range Hydrocarbons over Mesoporous Hâ€ZSMâ€5â€Supported Cobalt Nanoparticles. Chemistry - A European Journal, 2015, 21, 1928-1937.	1.7	110
132	Metallic Nanocatalysis: An Accelerating Seamless Integration with Nanotechnology. Small, 2015, 11, 268-289.	5.2	92
133	A Comparative Study of Size Effects in the Auâ€Catalyzed Oxidative and Nonâ€Oxidative Dehydrogenation of Benzyl Alcohol. Chemistry - an Asian Journal, 2014, 9, 2187-2196.	1.7	41
134	Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catalysis Today, 2014, 234, 31-41.	2.2	147
135	Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters. Catalysis Today, 2014, 233, 147-154.	2.2	57
136	Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catalysis, 2014, 4, 2175-2185.	5.5	353
137	Cs-substituted tungstophosphate-supported ruthenium nanoparticles as efficient and robust bifunctional catalysts for the conversion of inulin and cellulose into hexitols in water in the presence of H ₂ . RSC Advances, 2014, 4, 43131-43141.	1.7	12
138	Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Catalysis, 2014, 319, 15-26.	3.1	61
139	Oxidative dehydrogenation of ethane to ethylene in the presence of HCl over CeO2-based catalysts. Chinese Journal of Catalysis, 2014, 35, 1260-1266.	6.9	13
140	Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chemical Society Reviews, 2014, 43, 3480.	18.7	653
141	Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations. ChemSusChem, 2014, 7, 1557-1567.	3.6	148
142	MgO- and Pt-Promoted TiO < sub > 2 < /sub > as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis, 2014, 4, 3644-3653.	5.5	380
143	Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General, 2014, 488, 66-77.	2.2	92
144	Fischer–Tropsch Catalysts for the Production of Hydrocarbon Fuels with High Selectivity. ChemSusChem, 2014, 7, 1251-1264.	3.6	164

#	Article	IF	CITATIONS
145	Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nature Communications, 2013, 4, 2141.	5.8	327
146	Niobic Acid Nanosheets Synthesized by a Simple Hydrothermal Method as Efficient Brønsted Acid Catalysts. Chemistry of Materials, 2013, 25, 3277-3287.	3.2	50
147	Catalytic conversion of methyl chloride to lower olefins over modified H-ZSM-34. Chinese Journal of Catalysis, 2013, 34, 2047-2056.	6.9	10
148	Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst. Chinese Journal of Catalysis, 2013, 34, 956-963.	6.9	71
149	Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis. Journal of Energy Chemistry, 2013, 22, 321-328.	7.1	39
150	Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. Journal of Catalysis, 2013, 299, 53-66.	3.1	81
151	Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, 2013, 15, 2632.	1.3	364
152	Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chemical Communications, 2013, 49, 2451.	2.2	220
153	Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. Journal of Energy Chemistry, 2013, 22, 27-38.	7.1	130
154	Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Coâ€catalysts with a Coreâ€"Shell Structure. Angewandte Chemie - International Edition, 2013, 52, 5776-5779.	7.2	358
155	Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts. Catalysis Today, 2013, 215, 186-193.	2.2	175
156	Influence of the support and promotion on the structure and catalytic performance of copper–cobalt catalysts for carbon monoxide hydrogenation. Fuel, 2013, 103, 1111-1122.	3.4	57
157	CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalysis Science and Technology, 2012, 2, 969.	2.1	261
158	Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis, 2012, 295, 232-241.	3.1	68
159	The past, present and future of heterogeneous catalysis. Catalysis Today, 2012, 189, 2-27.	2.2	327
160	Mesoporous Beta Zeolite-Supported Ruthenium Nanoparticles for Selective Conversion of Synthesis Gas to C ₅ â€"C ₁₁ Isoparaffins. ACS Catalysis, 2012, 2, 441-449.	5.5	149
161	Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals. Dalton Transactions, 2012, 41, 9817.	1.6	153
162	Significant Synergistic Effect between Supported Ruthenium and Copper Oxides for Propylene Epoxidation by Oxygen. ChemPlusChem, 2012, 77, 27-30.	1.3	23

#	Article	IF	CITATIONS
163	Development of Bifunctional Catalysts for the Conversions of Cellulose or Cellobiose into Polyols and Organic Acids in Water. Catalysis Surveys From Asia, 2012, 16, 91-105.	1.0	36
164	Structure and catalytic performance of alumina-supported copper–cobalt catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 2012, 286, 51-61.	3.1	186
165	Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalateâ€5upported Gold Nanoparticles. Chemistry - A European Journal, 2012, 18, 2938-2947.	1.7	132
166	Transformation of Methane to Propylene: A Twoâ€Step Reaction Route Catalyzed by Modified CeO ₂ Nanocrystals and Zeolites. Angewandte Chemie - International Edition, 2012, 51, 2438-2442.	7.2	110
167	Selectivity tuning for the hydrogenation of carbon monoxide into hydrocarbons. Scientia Sinica Chimica, 2012, 42, 363-375.	0.2	1
168	Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions. Chemical Communications, 2011, 47, 9717.	2.2	118
169	Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons. Chemical Communications, 2011, 47, 9275.	2.2	96
170	Nanocomposites of TiO ₂ and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2011, 115, 10694-10701.	1.5	582
171	Mesoporous Zeoliteâ€upported Ruthenium Nanoparticles as Highly Selective Fischer–Tropsch Catalysts for the Production of C ₅ –C ₁₁ Isoparaffins. Angewandte Chemie - International Edition, 2011, 50, 5200-5203.	7.2	243
172	Highly Efficient Amide Synthesis from Alcohols and Amines by Virtue of a Waterâ€Soluble Gold/DNA Catalyst. Angewandte Chemie - International Edition, 2011, 50, 8917-8921.	7.2	217
173	Hydrotalciteâ€Supported Gold Catalyst for the Oxidantâ€Free Dehydrogenation of Benzyl Alcohol: Studies on Support and Gold Size Effects. Chemistry - A European Journal, 2011, 17, 1247-1256.	1.7	235
174	Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids. Catalysis Today, 2011, 164, 461-466.	2.2	76
175	Rh-catalyzed syngas conversion to ethanol: Studies on the promoting effect of FeOx. Catalysis Today, 2011, 171, 257-265.	2.2	51
176	Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream. Applied Catalysis B: Environmental, 2011, 102, 207-214.	10.8	99
177	Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem, 2010, 2, 1030-1058.	1.8	665
178	Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates. Science China Chemistry, 2010, 53, 337-350.	4.2	18
179	Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts. Journal of Catalysis, 2010, 271, 22-32.	3.1	131
180	Copper-catalyzed propylene epoxidation by oxygen: Significant promoting effect of vanadium on unsupported copper catalyst. Journal of Catalysis, 2010, 276, 76-84.	3.1	62

#	Article	IF	Citations
181	Mononuclear Bis(imino)arylcopper(I) Nâ€Heterocyclic Carbene Complex: Synthesis, Structure, and Reaction with Organic Azide. European Journal of Inorganic Chemistry, 2010, 2010, 4506-4512.	1.0	12
182	Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane. Applied Catalysis A: General, 2010, 380, 87-94.	2.2	18
183	Copper grafted on SBA-15 as efficient catalyst for the selective oxidation of methane by oxygen. Catalysis Today, 2010, 157, 143-148.	2.2	31
184	Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chemical Communications, 2010, 46, 2668.	2.2	126
185	A DNA-templated catalyst: the preparation of metal-DNA nanohybrids and their application in organic reactions. Chemical Communications, 2010, 46, 7912.	2.2	47
186	Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols. Chemical Communications, 2010, 46, 1547.	2.2	133
187	Oxidant-Free Dehydrogenation of Alcohols over Hydrotalcite-Supported Palla-dium Catalysts. Chinese Journal of Catalysis, 2010, 31, 1061-1070.	6.9	23
188	Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts. Journal of Natural Gas Chemistry, 2009, 18, 288-294.	1.8	36
189	Ruthenium Nanoparticles Supported on Carbon Nanotubes as Efficient Catalysts for Selective Conversion of Synthesis Gas to Diesel Fuel. Angewandte Chemie - International Edition, 2009, 48, 2565-2568.	7.2	241
190	Cobalt and Copper Composite Oxides as Efficient Catalysts for Preferential Oxidation of CO in H2-Rich Stream. Catalysis Letters, 2009, 127, 377-385.	1.4	58
191	Conversion of Cellulose into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst. Catalysis Letters, 2009, 133, 167-174.	1.4	290
192	Catalytic behavior and kinetic features of FeOx/SBA-15 catalyst for selective oxidation of methane by oxygen. Applied Catalysis A: General, 2009, 356, 103-111.	2.2	52
193	A metal-free catalytic system for the oxidation of benzylic methylenes and primary amines under solvent-free conditions. Green Chemistry, 2009, 11, 1973.	4.6	111
194	NiO–polyoxometalate nanocomposites as efficient catalysts for the oxidative dehydrogenation of propane and isobutane. Chemical Communications, 2009, , 2376.	2.2	31
195	Polyoxometalate-supported Pd nanoparticles as efficient catalysts for the direct synthesis of hydrogen peroxide in the absence of acid or halide promoters. Chemical Communications, 2009, , 5174.	2.2	49
196	Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chemical Communications, 2009, , 7179.	2.2	178
197	Catalytic Conversion of Ethylene to Propylene and Butenes over Hâ^'ZSM-5. Industrial & Engineering Chemistry Research, 2009, 48, 10788-10795.	1.8	111
198	Pd/Graphite as a Superior Catalyst for the Direct Synthesis of Hydrogen Peroxide from H2 and O2. Chemistry Letters, 2009, 38, 256-257.	0.7	12

#	Article	IF	CITATIONS
199	Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Encapsulated in SBA-15. Catalysis Letters, 2008, 120, 126-136.	1.4	54
200	Nanoâ€CuOâ€Catalyzed Ullmann Coupling of Phenols with Aryl Halides under Ligandâ€Free Conditions. European Journal of Organic Chemistry, 2008, 2008, 5112-5116.	1.2	103
201	Sizeâ€Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2008, 350, 453-464.	2.1	174
202	Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Applied Catalysis A: General, 2008, 334, 217-226.	2.2	113
203	Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane. Applied Catalysis A: General, 2008, 349, 212-221.	2.2	61
204	Selective oxidation of methane to formaldehyde by oxygen over SBA-15-supported molybdenum oxides. Applied Catalysis A: General, 2008, 350, 118-125.	2.2	24
205	Copper-based efficient catalysts for propylene epoxidation by molecular oxygen. Catalysis Today, 2008, 131, 496-504.	2.2	66
206	Iron-catalyzed propylene epoxidation by nitrous oxide: Effect of boron on structure and catalytic behavior of alkali metal ion-modified FeOx/SBA-15. Journal of Catalysis, 2008, 254, 251-262.	3.1	34
207	Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines. Green Chemistry, 2008, 10, 553.	4.6	111
208	Copper-Catalyzed Selective Oxidation of Methane by Oxygen: Studies on Catalytic Behavior and Functioning Mechanism of CuOx/SBA-15. Journal of Physical Chemistry C, 2008, 112, 13700-13708.	1.5	44
209	Cu(I)-Catalyzed Epoxidation of Propylene by Molecular Oxygen. Journal of Physical Chemistry C, 2008, 112, 7731-7734.	1.5	67
210	Boron-modified Chlorine-free K+–FeOx/SBA-15 as Highly Effective Catalyst for Propylene Epoxidation by Nitrous Oxide. Chemistry Letters, 2007, 36, 786-787.	0.7	2
211	Characterizations of Unsupported and Supported Rhodiumâ [*] Iron Phosphate Catalysts Effective for Oxidative Carbonylation of Methane. Journal of Physical Chemistry C, 2007, 111, 2044-2053.	1.5	16
212	Studies on the Removal of Bromocresol Green from Water by Solvent Sublation. Separation Science and Technology, 2007, 42, 1901-1911.	1.3	10
213	Osmium-Catalyzed Selective Oxidations of Methane and Ethane with Hydrogen Peroxide in Aqueous Medium. Advanced Synthesis and Catalysis, 2007, 349, 1199-1209.	2.1	94
214	Catalytic oxidation of ethylene and ethane to formaldehyde by oxygen. Journal of Catalysis, 2007, 250, 365-368.	3.1	15
215	SBA-15-supported molybdenum oxides as efficient catalysts for selective oxidation of ethane to formaldehyde and acetaldehyde by oxygen. Journal of Catalysis, 2007, 247, 245-255.	3.1	69
216	Lithium ion-exchanged zeolite faujasite as support of iron catalyst for Fischer-Tropsch synthesis. Catalysis Letters, 2007, 114, 178-184.	1.4	15

#	Article	IF	Citations
217	Selective oxidation of hydrocarbons catalyzed by iron-containing heterogeneous catalysts. Research on Chemical Intermediates, 2006, 32, 235-251.	1.3	26
218	Utilization of Microporous and Mesoporous Materials as Supports of Cobalt Catalysts for Regulating Product Distributions in Fischer–Tropsch Synthesis. Chemistry Letters, 2006, 35, 366-367.	0.7	18
219	Copper-catalyzed Selective Oxidation of Methane to Formaldehyde by Oxygen. Chemistry Letters, 2006, 35, 572-573.	0.7	10
220	Fe-MCM-41 for N2O Decomposition and Reduction with Methane. Chemistry Letters, 2006, 35, 544-545.	0.7	3
221	An Efficient Synthesis of Helical Mesoporous Silica Nanorods. Chemistry Letters, 2006, 35, 190-191.	0.7	34
222	Iron-containing heterogeneous catalysts for partial oxidation of methane and epoxidation of propylene. Catalysis Today, 2006, 117, 156-162.	2.2	49
223	Iron-catalyzed propylene epoxidation by nitrous oxide: Toward understanding the nature of active iron sites with modified Fe-MFI and Fe-MCM-41 catalysts. Journal of Catalysis, 2006, 239, 105-116.	3.1	62
224	Copper-catalyzed propylene epoxidation by molecular oxygen: Superior catalytic performances of halogen-free K+-modified CuOx/SBA-15. Journal of Catalysis, 2006, 241, 225-228.	3.1	91
225	Cobalt nanoparticles prepared in faujasite zeolites by borohydride reduction. Microporous and Mesoporous Materials, 2005, 86, 38-49.	2.2	51
226	Coordination structures of vanadium and iron in MCM-41 and the catalytic properties in partial oxidation of methane. Microporous and Mesoporous Materials, 2005, 77, 223-234.	2.2	54
227	Iron-containing MCM-41 catalysts for Baeyer–Villiger oxidation of ketones using molecular oxygen and benzaldehyde. Journal of Molecular Catalysis A, 2005, 236, 99-106.	4.8	84
228	Mg–Fe–Al mixed oxides with mesoporous properties prepared from hydrotalcite as precursors: Catalytic behavior in ethylbenzene dehydrogenation. Applied Catalysis A: General, 2005, 288, 220-231.	2.2	78
229	Epoxidation of styrene with molecular oxygen catalyzed by cobalt(II)-containing molecular sieves. Journal of Catalysis, 2005, 230, 384-397.	3.1	181
230	Direct conversion of methane to methyl acetate with nitrous oxide and carbon monoxide over heterogeneous catalysts containing both rhodium and iron phosphate. Journal of Catalysis, 2005, 233, 221-233.	3.1	39
231	Solvent-Free Aerobic Oxidation of Alcohols Catalyzed by an Efficient and Recyclable Palladium Heterogeneous Catalyst. Advanced Synthesis and Catalysis, 2005, 347, 1356-1360.	2.1	84
232	Simple Metal Oxides as Efficient Heterogeneous Catalysts for Epoxidation of Alkenes by Molecular Oxygen ChemInform, 2005, 36, no.	0.1	0
233	Dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 catalyst. Journal of Molecular Catalysis A, 2005, 230, 49-58.	4.8	90
234	Electrocatalytic oxidation of carbon monoxide and methanol at Pt nanoparticles confined in SBA-15: voltammetric and in situ infrared spectroscopic studies. Journal of Solid State Electrochemistry, 2005, 9, 363-370.	1.2	29

#	Article	IF	CITATIONS
235	Iron-Catalyzed Propylene Epoxidation by Nitrous Oxide:  Studies on the Effects of Alkali Metal Salts. Journal of Physical Chemistry B, 2005, 109, 23500-23508.	1.2	59
236	Superior catalytic activity of nano-sized metallic cobalt inside faujasite zeolite for Fischer-Tropsch synthesis. Studies in Surface Science and Catalysis, 2004, 147, 325-330.	1.5	1
237	SBA-15-supported iron phosphate catalyst for partial oxidation of methane to formaldehyde. Catalysis Today, 2004, 93-95, 155-161.	2.2	71
238	Excellent Catalytic Performances of SBA-15-Supported Vanadium Oxide for Partial Oxidation of Methane to Formaldehyde ChemInform, 2004, 35, no.	0.1	0
239	Iron-Catalyzed Propylene Epoxidation by Nitrous Oxide: Dramatic Shift of Allylic Oxidaton to Epoxidation by the Modification with Alkali Metal Salts ChemInform, 2004, 35, no.	0.1	0
240	Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2. Journal of Catalysis, 2004, 224, 404-416.	3.1	198
241	Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer–Tropsch synthesis. Catalysis Today, 2004, 89, 419-429.	2.2	77
242	Iron-catalysed propylene epoxidation by nitrous oxide: dramatic shift of allylic oxidation to epoxidation by the modification with alkali metal salts. Chemical Communications, 2004, , 1396.	2.2	28
243	Co2+-Exchanged faujasite zeolites as efficient heterogeneous catalysts for epoxidation of styrene with molecular oxygen. Chemical Communications, 2004, , 440.	2.2	79
244	Direct oxidation of propane to acrolein over MCM41-supported MoVTe mixed oxide catalysts. Catalysis Communications, 2004, 5, 697-701.	1.6	5
245	Iron-based heterogeneous catalysts for epoxidation of alkenes using molecular oxygen. Catalysis Communications, 2004, 5, 665-669.	1.6	44
246	Characterizations of Cobalt Oxide Nanoparticles within Faujasite Zeolites and the Formation of Metallic Cobalt. Chemistry of Materials, 2004, 16, 1967-1976.	3.2	118
247	Simple Metal Oxides as Efficient Heterogeneous Catalysts for Epoxidation of Alkenes by Molecular Oxygen. Chemistry Letters, 2004, 33, 1140-1141.	0.7	24
248	Partial oxidation of methane and ethane to oxygenates over silica supported rhenium oxide. Reaction Kinetics and Catalysis Letters, 2003, 79, 127-133.	0.6	7
249	Catalysis of Methane Coupling with Carbon Dioxide Over Binary Oxides. Topics in Catalysis, 2003, 22, 71-75.	1.3	5
250	MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. Journal of Catalysis, 2003, 217, 457-467.	3.1	121
251	Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange. Journal of Catalysis, 2003, 220, 347-357.	3.1	130
252	Carbon fibers prepared by pyrolysis of methane over Ni/MCM-41 catalyst. Microporous and Mesoporous Materials, 2003, 57, 283-289.	2.2	45

#	Article	IF	CITATIONS
253	Fe-MCM-41 catalyzed epoxidation of alkenes with hydrogen peroxide. Studies in Surface Science and Catalysis, 2003, 146, 625-628.	1.5	0
254	Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane. New Journal of Chemistry, 2003, 27, 1301.	1.4	37
255	Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer–Tropsch synthesis. Catalysis Communications, 2003, 4, 253-258.	1.6	30
256	53 Leaching features of Fe-MCM-41 during epoxidation of alkene with hydrogen peroxide. Studies in Surface Science and Catalysis, 2003, 145, 263-266.	1.5	1
257	Cr-MCM-41 for selective dehydrogenation of lower alkanes with carbon dioxide. Studies in Surface Science and Catalysis, 2003, 146, 725-728.	1.5	12
258	Excellent Catalytic Performances of SBA-15-supported Vanadium Oxide for Partial Oxidation of Methane to Formaldehyde. Chemistry Letters, 2003, 32, 860-861.	0.7	32
259	UV Raman Spectroscopy for Characterization of Chromium Species on Cr-MCM-41. Chemistry Letters, 2002, 31, 1152-1153.	0.7	4
260	Manganese-containing MCM-41 for epoxidation of styrene and stilbene. Journal of Molecular Catalysis A, 2002, 188, 189-200.	4.8	135
261	Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide. Journal of Catalysis, 2002, 209, 186-196.	3.1	247
262	V-MCM-41 for Selective Oxidation of Propane to Propene and Acrolein. Chemistry Letters, 2001, 30, 194-195.	0.7	3
263	Fe-MCM-41 for Selective Epoxidation of Styrene with Hydrogen Peroxide. Chemistry Letters, 2001, 30, 946-947.	0.7	17
264	Mn-based binary oxides as catalysts for the conversion of methane to C2 hydrocarbons with carbon dioxide as oxidant. Applied Catalysis A: General, 2001, 219, 183-193.	2.2	41
265	Direct conversion of methane into oxygenates. Applied Catalysis A: General, 2001, 222, 145-161.	2.2	230
266	Vanadium-Containing MCM-41 for Partial Oxidation of Lower Alkanes. Journal of Catalysis, 2001, 202, 308-318.	3.1	129
267	Study on the Anti-Coking Nature of Ni/SrTiO3 Catalysts by the CH4 Pyrolysis. Catalysis Letters, 2001, 76, 183-192.	1.4	8
268	Title is missing!. Catalysis Letters, 2001, 72, 215-219.	1.4	48
269	Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts. Catalysis Today, 2001, 68, 3-9.	2.2	133
270	CaO–ZnO Catalyst for Selective Conversion of Methane to C2 Hydrocarbons Using Carbon Dioxide as the Oxidant. Journal of Catalysis, 2000, 192, 252-255.	3.1	41

#	Article	IF	CITATIONS
271	Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature. Applied Catalysis A: General, 1999, 183, 317-324.	2.2	180
272	Carbon Dioxide as Oxidant for the Conversion of Methane to Ethane and Ethylene Using Modified CeO2 Catalysts. Journal of Catalysis, 1999, 186, 160-168.	3.1	59
273	Title is missing!. Catalysis Letters, 1998, 56, 203-206.	1.4	14
274	Direct Partial Oxidation of Methane to Synthesis Gas by Cerium Oxide. Journal of Catalysis, 1998, 175, 152-160.	3.1	306
275	Carbon dioxide-induced selective conversion of methane to C2 hydrocarbons on CeO2 modified with CaO. Applied Catalysis A: General, 1998, 172, L203-L206.	2.2	26
276	Reductive activation of oxygen for partial oxidation of light alkanes. Studies in Surface Science and Catalysis, 1998, , 15-24.	1.5	17
277	Effective Catalysts for Conversion of Methane to Ethane and Ethylene Using Carbon Dioxide. Chemistry Letters, 1998, 27, 1209-1210.	0.7	16
278	Oxidative carbonylation of methane to methyl acetate on a rhodium-doped iron phosphate catalyst. Chemical Communications, 1997, , 1187-1188.	2.2	14
279	Partial Oxidation of Ethane by Reductively Activated Oxygen over Iron Phosphate Catalyst. Journal of Catalysis, 1997, 171, 106-114.	3.1	58
280	The active oxygen for direct oxidation of methane to methanol in the presence of hydrogen. Studies in Surface Science and Catalysis, 1996, 101, 397-406.	1.5	5
281	Structure of catalytic active site for oxidation of methane to methanol by H2î—,O2 gas mixture over iron-containing catalysts. Journal of Molecular Catalysis A, 1996, 111, 341-356.	4.8	25
282	Ethane oxidative dehydrogenation over boron oxides supported on yttria stabilized zirconia. Catalysis Today, 1995, 24, 315-320.	2.2	16
283	Catalytic Oxidation of Methane to Methanol with H2-O2 Gas Mixture at Atmospheric Pressure. Journal of Catalysis, 1995, 155, 256-267.	3.1	76
284	In situ FTIR study on the active oxygen species for the conversion of methane to methanol. Catalysis Letters, 1995, 35, 259-263.	1.4	20
285	Direct conversion of methane and ethane to the corresponding alcohols using nitrous oxide over iron phosphate catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3953.	1.7	24
286	Partial oxidation of methane over iron molybdate catalyst. Studies in Surface Science and Catalysis, 1994, 81, 503-508.	1.5	4
287	Partial oxidation of methane with N2O over Fe2(MoO4)3 catalyst. Catalysis Letters, 1994, 24, 85-94.	1.4	10
288	Catalytic oxidation of methane to methanol initiated in a gas mixture of hydrogen and oxygen. Journal of the Chemical Society Chemical Communications, 1994, , 2209.	2.0	25

#	Article	IF	CITATIONS
289	Selective Oxidation of Methane to Methanol over FePO4Using N2O and H2at Low Temperatures. Chemistry Letters, 1994, 23, 1893-1896.	0.7	11
290	Kinetic study of the partial oxidation of methane over Fe2(MoO4)3 catalyst. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 4225.	1.7	24