Heather A Kreft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546489/publications.pdf

Version: 2024-02-01

759233 580821 25 640 12 25 citations h-index g-index papers 30 30 30 468 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of semantic context and talker variability in speech perception of cochlear-implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 2021, 149, 1224-1239.	1.1	12
2	The search for correlates of age-related cochlear synaptopathy: Measures of temporal envelope processing and spatial release from speech-on-speech masking. Hearing Research, 2021, 409, 108333.	2.0	8
3	The role of cochlear place coding in the perception of frequency modulation. ELife, 2020, 9, .	6.0	21
4	Development and Validation of Sentences Without Semantic Context to Complement the Basic English Lexicon Sentences. Journal of Speech, Language, and Hearing Research, 2020, 63, 3847-3854.	1.6	7
5	Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions. Journal of the Acoustical Society of America, 2019, 146, 195-210.	1.1	43
6	Comparing Rapid and Traditional Forward-Masked Spatial Tuning Curves in Cochlear-Implant Users. Trends in Hearing, 2019, 23, 233121651985130.	1.3	3
7	Auditory enhancement under forward masking in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2019, 146, 3448-3456.	1.1	2
8	Speech Perception with Spectrally Non-overlapping Maskers as Measure of Spectral Resolution in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 151-167.	1.8	12
9	A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise. Ear and Hearing, 2018, 39, 1136-1145.	2.1	21
10	Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11322-11326.	7.1	54
11	Estimating human cochlear tuning behaviorally via forward masking. AIP Conference Proceedings, 2018, , .	0.4	0
12	Auditory enhancement under simultaneous masking in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2018, 143, 901-910.	1.1	9
13	Auditory Enhancement in Cochlear-Implant Users Under Simultaneous and Forward Masking. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 483-493.	1.8	8
14	Speech intelligibility is best predicted by intensity, not cochlea-scaled entropy. Journal of the Acoustical Society of America, 2017, 142, EL264-EL269.	1.1	11
15	Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 619-633.	1.8	38
16	Induced Loudness Reduction and Enhancement in Acoustic and Electric Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 383-391.	1.8	5
17	Speech Masking in Normal and Impaired Hearing: Interactions Between Frequency Selectivity and Inherent Temporal Fluctuations in Noise. Advances in Experimental Medicine and Biology, 2016, 894, 125-132.	1.6	7
18	A Fast Method for Measuring Psychophysical Thresholds Across the Cochlear Implant Array. Trends in Hearing, 2015, 19, 233121651556979.	1.3	19

#	ARTICLE	IF	CITATIONS
19	Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing. Trends in Hearing, 2014, 18, 233121651455378.	1.3	83
20	Modulation Frequency Discrimination with Modulated and Unmodulated Interference in Normal Hearing and in Cochlear-Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 591-601.	1.8	22
21	Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users. Journal of the Acoustical Society of America, 2011, 130, 364-375.	1.1	92
22	Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users. Journal of the Acoustical Society of America, 2011, 129, 3916-3933.	1.1	36
23	Modulation rate discrimination using half-wave rectified and sinusoidally amplitude modulated stimuli in cochlear-implant users. Journal of the Acoustical Society of America, 2010, 127, 656-659.	1.1	14
24	Forward-masked spatial tuning curves in cochlear implant users. Journal of the Acoustical Society of America, 2008, 123, 1522-1543.	1.1	82
25	Effects of pulse rate and electrode array design on intensity discrimination in cochlear implant users. Journal of the Acoustical Society of America, 2004, 116, 2258-2268.	1.1	29