Todd G Deutsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering Surface Architectures for Improved Durability in III–V Photocathodes. ACS Applied Materials & Interfaces, 2022, 14, 20385-20392.	8.0	6
2	The effect of catholyte and catalyst layer binders on CO2 electroreduction selectivity. Chem Catalysis, 2022, 2, 400-421.	6.1	9
3	Long-Term Stability Metrics of Photoelectrochemical Water Splitting. Frontiers in Energy Research, 2022, 10, .	2.3	6
4	Failure Modes of Platinized pn ⁺ -GaInP Photocathodes for Solar-Driven H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 26622-26630.	8.0	4
5	(Invited) Photo-Electrochemical Hydrogen Production Systems Using III-V Semiconductors: Challenges in Scaling-up from an Electrode to a Device. ECS Meeting Abstracts, 2021, MA2021-01, 1241-1241.	0.0	0
6	Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen. Energy and Environmental Science, 2021, 14, 2335-2348.	30.8	23
7	(Invited) Enabling Scalable CO/CO2 Reduction. ECS Meeting Abstracts, 2021, MA2021-02, 816-816.	0.0	0
8	Crosscutting Multiscale Modeling of Electrolysis Cells for Accelerating Materials R&D. ECS Meeting Abstracts, 2021, MA2021-02, 1350-1350.	0.0	0
9	Understanding the Stability of Etched or Platinized p-GalnP Photocathodes for Solar-Driven H ₂ Evolution. ACS Applied Materials & Interfaces, 2021, 13, 57350-57361.	8.0	6
10	Practical challenges in the development of photoelectrochemical solar fuels production. Sustainable Energy and Fuels, 2020, 4, 985-995.	4.9	58
11	Highly efficient and durable III–V semiconductor-catalyst photocathodes <i>via</i> a transparent protection layer. Sustainable Energy and Fuels, 2020, 4, 1437-1442.	4.9	9
12	Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem Ill–V Unassisted Solar Water Splitting. ACS Energy Letters, 2020, 5, 2631-2640.	17.4	48
13	Emergent Degradation Phenomena Demonstrated on Resilient, Flexible, and Scalable Integrated Photoelectrochemical Cells. Advanced Energy Materials, 2020, 10, 2002706.	19.5	8
14	High-Performance Bipolar Membrane Development for Improved Water Dissociation. ACS Applied Polymer Materials, 2020, 2, 4559-4569.	4.4	45
15	Water Splitting: Emergent Degradation Phenomena Demonstrated on Resilient, Flexible, and Scalable Integrated Photoelectrochemical Cells (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070197.	19.5	0
16	A Robust, Scalable Platform for the Electrochemical Conversion of CO ₂ to Formate: Identifying Pathways to Higher Energy Efficiencies. ACS Energy Letters, 2020, 5, 1825-1833.	17.4	126
17	Modeling Water Electrolysis in Bipolar Membranes. Journal of the Electrochemical Society, 2020, 167, 114502.	2.9	25
18	Photoelectrochemical water splitting using strain-balanced multiple quantum well photovoltaic cells. Sustainable Energy and Fuels, 2019, 3, 2837-2844.	4.9	14

#	Article	IF	CITATIONS
19	High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. Nature Communications, 2019, 10, 3388.	12.8	42
20	Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. Journal of Materials Chemistry A, 2019, 7, 16821-16832.	10.3	24
21	Protection of GaInP ₂ Photocathodes by Direct Photoelectrodeposition of MoS <i>_x</i> Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 25115-25122.	8.0	18
22	High-Throughput Experimental Study of Wurtzite Mn1–xZnxO Alloys for Water Splitting Applications. ACS Omega, 2019, 4, 7436-7447.	3.5	5
23	Bipolar Membrane Development for Reversible Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
24	Towards Efficient Electrocatalytic Conversion of CO2 to Formate Via Novel Electrolyzer Configurations. ECS Meeting Abstracts, 2019, , .	0.0	0
25	Solar-to-Hydrogen Efficiency: Shining Light on Photoelectrochemical Device Performance. ECS Meeting Abstracts, 2019, , .	0.0	0
26	(Invited) HydroGEN PEC Supernode: Emergent Degradation Mechanisms with Integration and Scale up of PEC Devices. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Bipolar Membrane Development for Fuel Cells and Electrolyzers. ECS Meeting Abstracts, 2019, , .	0.0	0
28	(Invited) Electrocatalytic Reduction of CO2in Gas-Phase Electrolyzers: Moving Towards a Relevant Use of CO2. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Modeling of a Gas-Phase, Bipolar Membrane CO2 Electrolyzer. ECS Meeting Abstracts, 2019, , .	0.0	0
30	CO2electrolyzer Development: Preliminary Results from a Bipolar-Membrane-Based Flow Cell for Electrocatalytic Reduction of Carbon Dioxide. ECS Meeting Abstracts, 2019, , .	0.0	0
31	Photoelectrochemical Water Splitting Using Multiple Quantum Well Photovoltaic Devices. ECS Meeting Abstracts, 2019, , .	0.0	0
32	Hydrogen PEC Supernode: Emergent Degradation Mechanisms with Integration and Scale up of PEC Devices. ECS Meeting Abstracts, 2019, , .	0.0	0
33	Unassisted Water Splitting Using a GaSb x P (1â^' x) Photoanode. Advanced Energy Materials, 2018, 8, 1703247.	19.5	17
34	Coaxial wires coax energy from water. Nature Catalysis, 2018, 1, 375-376.	34.4	1
35	Employing Overlayers To Improve the Performance of Cu ₂ BaSnS ₄ Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials, 2017, 29, 916-920.	6.7	61
36	Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nature Energy, 2017, 2, .	39.5	115

#	Article	IF	CITATIONS
37	Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nature Energy, 2017, 2, .	39.5	333
38	Influence of support electrolytic in the electrodeposition of Cu Ga Se thin films. Superlattices and Microstructures, 2017, 101, 373-383.	3.1	2
39	Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. ChemSusChem, 2017, 10, 767-773.	6.8	27
40	Photo-Electrochemical Hydrogen Generation from Inverted Metamorphic Multijunction III-Vs. , 2017, , .		0
41	Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes. Journal of Physical Chemistry Letters, 2016, 7, 2044-2049.	4.6	74
42	Reversible GaInP ₂ Surface Passivation by Water Adsorption: A Model System for Ambient-Dependent Photoluminescence. Journal of Physical Chemistry C, 2016, 120, 4418-4422.	3.1	7
43	Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte. Journal of Materials Chemistry A, 2016, 4, 2831-2836.	10.3	29
44	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	11.2	2
45	Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance. Energy and Environmental Science, 2016, 9, 74-80.	30.8	102
46	Phosphonic Acid Modification of GaInP ₂ Photocathodes Toward Unbiased Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 11346-11350.	8.0	62
47	New Visible Light Absorbing Materials for Solar Fuels, Ga(Sb _{<i>x</i>})N _{1â^'<i>x</i>} . Advanced Materials, 2014, 26, 2878-2882.	21.0	30
48	Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices. Energy and Environmental Science, 2014, 7, 2951-2956.	30.8	174
49	Incident Photon-to-Current Efficiency and Photocurrent Spectroscopy. SpringerBriefs in Energy, 2013, , 87-97.	0.3	9
50	Electronic structure study of N, O related defects in GaP for photoelectrochemical applications. Journal of Materials Chemistry A, 2013, 1, 8425.	10.3	4
51	Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy and Environmental Science, 2013, 6, 1983.	30.8	1,119
52	Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes. Physical Chemistry Chemical Physics, 2013, 15, 14723.	2.8	83
53	BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Physical Chemistry Chemical Physics, 2013, 15, 3273.	2.8	140
54	UV-Vis Spectroscopy. SpringerBriefs in Energy, 2013, , 49-62.	0.3	22

#	Article	IF	CITATIONS
55	PEC Characterization Flowchart. SpringerBriefs in Energy, 2013, , 45-47.	0.3	2
56	Flat-Band Potential Techniques. SpringerBriefs in Energy, 2013, , 63-85.	0.3	10
57	Experimental Considerations. SpringerBriefs in Energy, 2013, , 17-44.	0.3	2
58	Stability Testing. SpringerBriefs in Energy, 2013, , 115-118.	0.3	0
59	Photoelectrochemical activity of as-grown, α-Fe ₂ O ₃ nanowire array electrodes for water splitting. Nanotechnology, 2012, 23, 194009.	2.6	95
60	The stability of illuminated p-GaInP2 semiconductor photoelectrode. International Journal of Hydrogen Energy, 2012, 37, 14009-14014.	7.1	14
61	Novel Micropixelation Strategy to Stabilize Semiconductor Photoelectrodes for Solar Water Splitting Systems. Journal of Physical Chemistry C, 2012, 116, 19262-19267.	3.1	5
62	Titanium and magnesium Co-alloyed hematite thin films for photoelectrochemical water splitting. Journal of Applied Physics, 2012, 111, 073502.	2.5	30
63	Light induced water oxidation on cobalt-phosphate (Co–Pi) catalyst modified semi-transparent, porous SiO2–BiVO4 electrodes. Physical Chemistry Chemical Physics, 2012, 14, 7032.	2.8	71
64	Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting. Journal of Applied Physics, 2011, 110, .	2.5	28
65	Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy and Environmental Science, 2011, 4, 1690.	30.8	221
66	Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy and Environmental Science, 2011, 4, 5028.	30.8	505
67	Influence of gas ambient on the synthesis of co-doped ZnO:(Al,N) films for photoelectrochemical water splitting. Journal of Power Sources, 2010, 195, 5801-5805.	7.8	47
68	Surface modification of a-SiC photoelectrodes for photocurrent enhancement. , 2010, , .		3
69	Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. Journal of Materials Research, 2010, 25, 69-75.	2.6	56
70	Oxidation and characterization of AlInP under light-soaked, damp heat conditions. , 2010, , .		3
71	Electrochemical deposition of copper oxide nanowires for photoelectrochemical applications. Journal of Materials Chemistry, 2010, 20, 6962.	6.7	91
72	Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 2010, 25, 3-16.	2.6	1,032

#	Article	IF	CITATIONS
73	Development of a hybrid photoelectrochemical (PEC) device with amorphous silicon carbide as the photoelectrode for water splitting. Materials Research Society Symposia Proceedings, 2009, 1171, 29.	0.1	4
74	Amorphous silicon carbide photoelectrode for hydrogen production directly from water using sunlight. Philosophical Magazine, 2009, 89, 2723-2739.	1.6	42
75	Ternary cobalt spinel oxides for solar driven hydrogen production: Theory and experiment. Energy and Environmental Science, 2009, 2, 774.	30.8	60
76	(Photo)electrochemical Characterization of Doped ZnO Electrodes. ECS Meeting Abstracts, 2009, , .	0.0	0
77	Direct Water Splitting Under Visible Light with a Nanostructured Photoanode and GaInP2 Photocathode. ECS Transactions, 2008, 6, 37-44.	0.5	8
78	Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. Journal of Power Sources, 2008, 176, 387-392.	7.8	115
79	Carrier concentration tuning of bandgap-reduced p-type ZnO films by codoping of Cu and Ga for improving photoelectrochemical response. Journal of Applied Physics, 2008, 103, 073504.	2.5	65
80	Direct Water Splitting under Visible Light with Nanostructured Hematite and WO[sub 3] Photoanodes and a GalnP[sub 2] Photocathode. Journal of the Electrochemical Society, 2008, 155, F91.	2.9	121
81	Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. , 2008, , .		4
82	Photoelectrochemical Characterization and Durability Analysis of GaInPN Epilayers. Journal of the Electrochemical Society, 2008, 155, B903.	2.9	38
83	ZnO nanocoral structures for photoelectrochemical cells. Applied Physics Letters, 2008, 93, 163117.	3.3	92
84	Band gap reduction of ZnO for photoelectrochemical splitting of water. Proceedings of SPIE, 2007, , .	0.8	12
85	Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. Journal of Applied Physics, 2007, 102, .	2.5	114
86	Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Applied Physics Letters, 2007, 91, .	3.3	144
87	Photoelectrochemical Properties of N-Incorporated ZnO Films Deposited by Reactive RF Magnetron Sputtering. Journal of the Electrochemical Society, 2007, 154, B956.	2.9	81
88	Illâ~'V Nitride Epilayers for Photoelectrochemical Water Splitting: GaPN and GaAsPNâ€. Journal of Physical Chemistry B, 2006, 110, 25297-25307.	2.6	94
89	Amorphous Silicon Carbide Photoelectrode for Hydrogen Production from Water using Sunlight. , 0,		0
90	Electrocatalytic Reduction of Carbon Dioxide at a Triple Phase Boundary in Flow Reactors. , 0, , .		0

#	Article	IF	CITATIONS
91	Photo-Electrochemical Hydrogen Production Systems using III-V Semiconductors: Challenges in Scaling-up from an Electrode to a Device. , 0, , .		0
92	Photo-Electrochemical Hydrogen Production Systems using III-V Semiconductors: Challenges in Scaling-up from an Electrode to a Device. , 0, , .		0
93	Electrocatalytic Reduction of Carbon Dioxide at a Triple Phase Boundary in Flow Reactors. , 0, , .		0