
Sundeep Kalantry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Murine Polycomb Group Protein Eed Is Required for Global Histone H3 Lysine-27 Methylation. Current Biology, 2005, 15, 942-947.	1.8	319
2	The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nature Cell Biology, 2006, 8, 195-202.	4.6	134
3	The central role of EED in the orchestration of polycomb group complexes. Nature Communications, 2014, 5, 3127.	5.8	130
4	A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARÎ \pm and T18 oncoproteins. Nature Genetics, 1999, 23, 287-295.	9.4	127
5	Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature, 2009, 460, 647-651.	13.7	126
6	The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm–specific protein with an extracellular cysteine-rich domain. Nature Genetics, 2001, 27, 412-416.	9.4	123
7	The Polycomb Group Protein EED Is Dispensable for the Initiation of Random X-Chromosome Inactivation. PLoS Genetics, 2006, 2, e66.	1.5	106
8	Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 5, 954-962.	2.3	98
9	A Primary Role for the Tsix IncRNA in Maintaining Random X-Chromosome Inactivation. Cell Reports, 2015, 11, 1251-1265.	2.9	87
10	Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4236-45.	3.3	87
11	Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nature Genetics, 2020, 52, 95-105.	9.4	69
12	X Chromosomes Alternate between Two States prior to Random X-Inactivation. PLoS Biology, 2006, 4, e159.	2.6	60
13	MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency. Cell Stem Cell, 2016, 18, 481-494.	5.2	57
14	A PRC2-independent function for EZH2 in regulating rRNA 2′-O methylation and IRES-dependent translation. Nature Cell Biology, 2021, 23, 341-354.	4.6	54
15	Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Development (Cambridge), 2011, 138, 2049-2057.	1.2	49
16	mRNAs for activin receptors II and IIB are expressed in mouse oocytes and in the epiblast of pregastrula and gastrula stage mouse embryos. Mechanisms of Development, 1995, 49, 3-11.	1.7	46
17	Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nature Communications, 2014, 5, 4209.	5.8	43
18	An apicosome initiates self-organizing morphogenesis of human pluripotent stem cells. Journal of Cell Biology, 2017, 216, 3981-3990.	2.3	41

SUNDEEP KALANTRY

#	Article	IF	CITATIONS
19	A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9958-9963.	3.3	40
20	Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. ELife, 2019, 8, .	2.8	38
21	Gene rearrangements in the molecular pathogenesis of acute promyelocytic leukemia. Journal of Cellular Physiology, 1997, 173, 288-296.	2.0	37
22	Sex-specific silencing of X-linked genes by Xist RNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E309-18.	3.3	37
23	Functional Dissection of the m6A RNA Modification. Trends in Biochemical Sciences, 2017, 42, 85-86.	3.7	35
24	Differences between homologous alleles of olfactory receptor genes require the Polycomb Group protein Eed. Journal of Cell Biology, 2007, 179, 269-276.	2.3	33
25	Paternal RLIM/Rnf12 Is a Survival Factor for Milk-Producing Alveolar Cells. Cell, 2012, 149, 630-641.	13.5	30
26	Long nonoding RNAs in the X-inactivation center. Chromosome Research, 2013, 21, 601-614.	1.0	28
27	An Xist-activating antisense RNA required for X-chromosome inactivation. Nature Communications, 2015, 6, 8564.	5.8	26
28	PGC7, H3K9me2 and Tet3: regulators of DNA methylation in zygotes. Cell Research, 2013, 23, 6-9.	5.7	23
29	Visualizing Long Noncoding RNAs on Chromatin. Methods in Molecular Biology, 2016, 1402, 147-164.	0.4	21
30	PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice. Genome Biology, 2017, 18, 82.	3.8	19
31	Recent advances in X-chromosome inactivation. Journal of Cellular Physiology, 2011, 226, 1714-1718.	2.0	18
32	Activation of Xist by an evolutionarily conserved function of KDM5C demethylase. Nature Communications, 2022, 13, 2602.	5.8	16
33	A monoallelic-to-biallelic T-cell transcriptional switch regulates GATA3 abundance. Genes and Development, 2015, 29, 1930-1941.	2.7	13
34	Chromatin-enriched IncRNAs: a novel class of enhancer RNAs. Nature Structural and Molecular Biology, 2017, 24, 556-557.	3.6	13
35	Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nature Communications, 2022, 13, 2516.	5.8	13
36	Generating primed pluripotent epiblast stem cells: A methodology chapter. Current Topics in Developmental Biology, 2020, 138, 139-174.	1.0	6

#	Article	IF	CITATIONS
37	Experimental Analysis of Imprinted Mouse X-Chromosome Inactivation. Methods in Molecular Biology, 2018, 1861, 177-203.	0.4	5
38	Highly Resolved Detection of Long Non-coding RNAs In Situ. Methods in Molecular Biology, 2021, 2372, 123-144.	0.4	2
39	Mary Lyon: A Tribute. American Journal of Human Genetics, 2015, 97, 507-511.	2.6	1