
## Yu-Long Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754633/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rhodium-catalyzed coupling-cyclization reaction of isocyanides and 2-azidophenyloxyacrylates:<br>synthesis of <i>N</i> -(3-substituted benzo[ <i>d</i> ]oxazol-2(3 <i>H</i> )-ylidene)amines and<br>dihydrobenzo[ <i>d</i> ]oxazoles. Organic Chemistry Frontiers, 2022, 9, 407-412.                                                                        | 4.5  | 8         |
| 2  | NaN(SiMe <sub>3</sub> ) <sub>2</sub> /CsTFA Copromoted Aminobenzylation/Cyclization of<br>2-Isocyanobenzaldehydes with Toluene Derivatives or Benzyl Compounds: One-Pot Access to<br>Dihydroquinazolines and Quinazolines. Journal of Organic Chemistry, 2022, 87, 3156-3166.                                                                               | 3.2  | 12        |
| 3  | Rhodium-catalyzed coupling-cyclization of <i>o</i> -alkynyl/propargyl arylazides or <i>o</i> -azidoaryl<br>acetylenic ketones with arylisocyanides: synthesis of 6 <i>H</i> -indolo[2,3- <i>b</i> ]quinolines,<br>dibenzonaphthyridones and dihydrodibenzo[ <i>b</i> , <i>g</i> ] [1,8]-naphthyridines. Organic Chemistry<br>Frontiers. 2022. 9. 4453-4459. | 4.5  | 4         |
| 4  | PPTS atalyzed Bicyclization Reaction of 2â€lsocyanobenzaldehydes with Various Amines: Synthesis of<br>Diverse Fused Quinazolines. Advanced Synthesis and Catalysis, 2021, 363, 1923-1929.                                                                                                                                                                   | 4.3  | 9         |
| 5  | Photocatalytic C(sp <sup>3</sup> )–O/N Cross-Couplings by Nal–PPh <sub>3</sub> /CuBr Cooperative<br>Catalysis: Computational Design and Experimental Verification. ACS Catalysis, 2021, 11, 6633-6642.                                                                                                                                                      | 11.2 | 24        |
| 6  | Rhodium-catalyzed homodimerization–cyclization reaction of two vinyl isocyanides: a general route<br>to 2-(isoquinolin-1-yl)oxazoles. Organic Chemistry Frontiers, 2020, 7, 126-130.                                                                                                                                                                        | 4.5  | 22        |
| 7  | Copper-Catalyzed Cascade Cyclization Reaction of Enamines and Electron-Deficient Terminal Alkynes:<br>Synthesis of Polysubstituted Pyrido[1,2- <i>a</i> ]indoles. Organic Letters, 2020, 22, 36-40.                                                                                                                                                         | 4.6  | 25        |
| 8  | Rhodium/copper-cocatalyzed coupling-cyclization of <i>o</i> -alkenyl arylisocyanides with vinyl azides: one-pot synthesis of α-carbolines. Organic Chemistry Frontiers, 2020, 7, 3493-3498.                                                                                                                                                                 | 4.5  | 18        |
| 9  | Copper-catalyzed cascade cyclization reaction of 3-aminocyclobutenones with electron-deficient internal alkynes: synthesis of fully substituted indoles. Chemical Communications, 2020, 56, 9815-9818.                                                                                                                                                      | 4.1  | 6         |
| 10 | Silver-Catalyzed Cascade Cyclization Reaction of Isocyanides with Sulfoxonium Ylides: Synthesis of 3-Aminofurans and 4-Aminoquinolines. Organic Letters, 2020, 22, 7640-7644.                                                                                                                                                                               | 4.6  | 31        |
| 11 | Synthesis of pyrazolo[1,5- <i>c</i> ]quinazoline derivatives through the copper-catalyzed domino reaction of <i>o</i> -alkenyl aromatic isocyanides with diazo compounds. Chemical Communications, 2020, 56, 7665-7668.                                                                                                                                     | 4.1  | 13        |
| 12 | Copper(II)â€catalyzed Domino Reaction of the Acyclic Keteneâ€( S , S )â€Acetals with Diazo Compounds:<br>Convenient Synthesis of Polyâ€substituted Thiophenes. Advanced Synthesis and Catalysis, 2019, 361,<br>5684-5689.                                                                                                                                   | 4.3  | 12        |
| 13 | A rhodium-catalyzed three-component reaction of arylisocyanides, trifluorodiazoethane, and activated methylene isocyanides or azomethine ylides: an efficient synthesis of trifluoroethyl-substituted imidazoles. Organic Chemistry Frontiers, 2019, 6, 3657-3662.                                                                                          | 4.5  | 28        |
| 14 | Rhodium-Catalyzed Coupling–Cyclization of Alkenyldiazoacetates with <i>o</i> -Alkenyl<br>Arylisocyanides: A General Route to Carbazoles. Organic Letters, 2019, 21, 2973-2977.                                                                                                                                                                              | 4.6  | 37        |
| 15 | Copper-Catalyzed Cascade Cyclization Reactions of Diazo Compounds with <i>tert</i> -Butyl Nitrite<br>and Alkynes: One-Pot Synthesis of Isoxazoles. Journal of Organic Chemistry, 2019, 84, 16214-16221.                                                                                                                                                     | 3.2  | 40        |
| 16 | Zn(OAc) <sub>2</sub> -catalyzed tandem cyclization of isocyanides, α-diazoketones, and anhydrides: a<br>general route to polysubstituted maleimides. Chemical Communications, 2019, 55, 12519-12522.                                                                                                                                                        | 4.1  | 19        |
| 17 | Rhodium-Catalyzed Tandem Reaction of Isocyanides with Azides and Oxygen Nucleophiles: Synthesis of<br>Isoureas. Journal of Organic Chemistry, 2019, 84, 53-59.                                                                                                                                                                                              | 3.2  | 21        |
| 18 | DBUâ€Catalyzed [3+3] and [3+2] Annulation Reactions of Azomethine Ylides with αâ€Diazocarbonyls as<br><i>N</i> â€Terminal Electrophiles: Modular, Atomâ€Economical Access to 1,2,4â€Triazine and 1,2,4â€Triazole<br>Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 2172-2177.                                                                    | 4.3  | 30        |

Yu-Long Zhao

| #  | Article                                                                                                                                                                                                                                                                                                                        | IF              | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| 19 | Acid/Baseâ€Coâ€catalyzed Direct Oxidative αâ€Amination of Cyclic Ketones: Using Molecular Oxygen as the<br>Oxidant. Advanced Synthesis and Catalysis, 2018, 360, 455-461.                                                                                                                                                      | 4.3             | 14        |
| 20 | Rhodiumâ€Catalyzed Tandem Reaction of Isocyanides with Trifluorodiazoethane and Nucleophiles:<br>Divergent Synthesis of Trifluoroethylâ€Substituted Isoquinolines, Imidates, and Amidines. Advanced<br>Synthesis and Catalysis, 2018, 360, 2945-2951.                                                                          | 4.3             | 38        |
| 21 | Thermally induced formal [4+2] cycloaddition of 3-aminocyclobutenones with electron-deficient alkynes: facile and efficient synthesis of 4-pyridones. Chemical Communications, 2018, 54, 8229-8232.                                                                                                                            | 4.1             | 14        |
| 22 | Acid/Base-Co-catalyzed Formal Baeyer–Villiger Oxidation Reaction of Ketones: Using Molecular<br>Oxygen as the Oxidant. Organic Letters, 2018, 20, 4862-4866.                                                                                                                                                                   | 4.6             | 19        |
| 23 | Gold/Copper-Co-catalyzed Tandem Reactions of 2-Alkynylanilines: AÂSynthetic Strategy for the<br>C2-Quaternary Indolin-3-ones. Organic Letters, 2017, 19, 1160-1163.                                                                                                                                                            | 4.6             | 43        |
| 24 | Copperâ€Catalyzed Cascade Cyclization Reactions of Isocyanides with αâ€Diazocarbonyls as Nâ€Terminal<br>Electrophiles: Efficient Synthesis of 2â€Imidazolines and 1,1′â€Biimidazoles. Advanced Synthesis and<br>Catalysis, 2017, 359, 351-356.                                                                                 | 4.3             | 29        |
| 25 | Rhodiumâ€Catalyzed Oxidative Coupling Reaction of Isocyanides with Alcohols or Amines and<br>Molecular Oxygen as Oxygen Source: Synthesis of Carbamates and Ureas. European Journal of Organic<br>Chemistry, 2017, 2017, 1132-1138.                                                                                            | 2.4             | 19        |
| 26 | <i>t</i> BuLiâ€Promoted Intermolecular Regioselective Nucleophilic Addition of Arenes to Diazo<br>Compounds as Nâ€Terminal Electrophiles: Efficient Synthesis of Hydrazine Derivatives. European Journal<br>of Organic Chemistry, 2017, 2017, 6137-6145.                                                                       | 2.4             | 11        |
| 27 | DBU-mediated metal-free oxidative cyanation of $\hat{I}\pm$ -amino carbonyl compounds: using molecular oxygen as the oxidant. Organic and Biomolecular Chemistry, 2016, 14, 165-171.                                                                                                                                           | 2.8             | 7         |
| 28 | Activation of αâ€Diazocarbonyls by Organic Catalysts: Diazo Group Acting as a Strong Nâ€Terminal<br>Electrophile. Angewandte Chemie - International Edition, 2015, 54, 12107-12111.                                                                                                                                            | 13.8            | 56        |
| 29 | Oneâ€Pot Synthesis of Phenanthridinones by Using a Baseâ€Catalyzed/Promoted Bicyclization of<br>α,βâ€Unsaturated Carbonyl Compounds with Dimethyl Glutaconate. European Journal of Organic<br>Chemistry, 2015, 2015, 4892-4899.                                                                                                | 2.4             | 6         |
| 30 | Copper(ii)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo<br>compounds: a facile and efficient synthesis of 1,2,3-triazoles. Chemical Communications, 2015, 51,<br>11564-11567.                                                                                                            | 4.1             | 55        |
| 31 | Base-Promoted Oxidative C–H Functionalization of α-Amino Carbonyl Compounds under Mild<br>Metal-Free Conditions: Using Molecular Oxygen as the Oxidant. Organic Letters, 2015, 17, 370-373.                                                                                                                                    | 4.6             | 34        |
| 32 | Palladacycles derived from arylphosphinamides for mild Suzuki–Miyaura cross-couplings. RSC<br>Advances, 2015, 5, 69776-69781.                                                                                                                                                                                                  | 3.6             | 19        |
| 33 | Metalâ€Free 2,3â€Dichloroâ€5,6â€dicyanoâ€1,4â€benzoquinone (DDQ)â€Mediated Crossâ€Dehydrogenativeâ€<br>(CDC) of Benzylic C( <i>sp</i> <sup>3</sup> )H Bonds and Vinylic C( <i>sp</i> <sup>2</sup> )H Bonds:<br>Efficient Oneâ€Pot Synthesis of 1 <i>H</i> â€Indenes. Advanced Synthesis and Catalysis, 2014, 356, 3157-3163. | Coupling<br>4.3 | 41        |
| 34 | A base-catalyzed cycloisomerization of 5-cyano-pentyne derivatives: an efficient synthesis of 3-cyano-4,5-dihydro-1H-pyrroles. Chemical Communications, 2014, 50, 12490-12492.                                                                                                                                                 | 4.1             | 16        |
| 35 | Base-catalyzed bicyclization of dialkyl glutaconates with cinnamoylacetamides: a synthetic strategy for isoquinolinedione derivatives. Chemical Communications, 2014, 50, 6458.                                                                                                                                                | 4.1             | 29        |
| 36 | Palladiumâ€Catalyzed Silverâ€Mediated αâ€Arylation of Acetic Acid: A New Approach for the αâ€Arylation of<br>Carbonyl Compounds. ChemCatChem, 2014, 6, 1589-1593.                                                                                                                                                              | 3.7             | 8         |

Yu-Long Zhao

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cul-Catalyzed, One-Pot, Three-Component Huisgen Cycloaddition Reaction of Conjugated Enynes and In<br>Situ–Generated Azides. Synthetic Communications, 2013, 43, 2119-2126.                                                                                  | 2.1 | 4         |
| 38 | Bicyclization of Diazomethanes: A Synthetic Strategy for Fused Pyrazoles. Advanced Synthesis and<br>Catalysis, 2013, 355, 1540-1544.                                                                                                                         | 4.3 | 27        |
| 39 | [3+2] Cycloaddition of Propargylamines and αâ€Acylketene Dithioacetals: A Synthetic Strategy for Highly<br>Substituted Pyrroles. Advanced Synthesis and Catalysis, 2012, 354, 3545-3550.                                                                     | 4.3 | 26        |
| 40 | Synthesis of Acridines and Persubstituted Phenols from Cyclobutenones and Active Methylene<br>Ketones. Journal of Organic Chemistry, 2012, 77, 5173-5178.                                                                                                    | 3.2 | 29        |
| 41 | Tandem [5+1] annulation–isocyanide cyclization: efficient synthesis of hydroindolones. Chemical<br>Communications, 2011, 47, 12316.                                                                                                                          | 4.1 | 37        |
| 42 | A Highly Practical and Reliable Nickel Catalyst for Suzuki–Miyaura Coupling of Aryl Halides. Advanced<br>Synthesis and Catalysis, 2011, 353, 1543-1550.                                                                                                      | 4.3 | 55        |
| 43 | Highly efficient synthesis of 3-amino-/alkylthio-cyclobut-2-en-1-ones based on the cyclization of acyl ketene dithioacetals. Chemical Communications, 2010, 46, 7614.                                                                                        | 4.1 | 23        |
| 44 | Highly Efficient Access to Bi―and Tricyclic Ketals through Goldâ€Catalyzed Tandem Reactions of<br>4â€Acylâ€1,6â€diynes. Chemistry - A European Journal, 2009, 15, 1830-1834.                                                                                 | 3.3 | 42        |
| 45 | A Synthetic Strategy for Polyfunctionalized Bicyclo[3.3.1]nonanes Based on a Tandem<br>Three-Component [3 + 2] Cycloaddition of α-Cinnamoyl Ketene- <i>S</i> , <i>S</i> -acetals with Oxalyl<br>Chloride. Journal of Organic Chemistry, 2009, 74, 5622-5625. | 3.2 | 21        |
| 46 | Protonâ€Promoted Hydroamination of 3â€Dialkylthiomethyleneâ€1,4â€pentadiynes with<br><i>o</i> â€Phenylenediamines: A Facile Route to Benzo[ <i>b</i> ][1,4]diazepines. Advanced Synthesis and<br>Catalysis, 2008, 350, 1537-1543.                            | 4.3 | 10        |
| 47 | Ethynyl Ketene-S,S-acetals:Â The Highly Reactive Electron-Rich Dienophiles and Applications in the<br>Synthesis of 4-Functionalized Quinolines via a One-Pot Three-Component Reaction. Journal of Organic<br>Chemistry, 2007, 72, 4985-4988.                 | 3.2 | 67        |
| 48 | Azo-coupling Decarboxylation Reaction ofα-Carboxy Ketene Dithioacetals in Water–a New Route to<br>1,2-Diaza-1,3-butadienes. Chinese Journal of Chemistry, 2006, 24, 1431-1434.                                                                               | 4.9 | 10        |
| 49 | Heteroatom-Substituted Expanded Radialenes:Â One-Pot Synthesis and Characterization of Expanded<br>1,3-Dithiolane[n]radialenes. Journal of Organic Chemistry, 2005, 70, 6913-6917.                                                                           | 3.2 | 32        |
| 50 | FIRST SYNTHESIS OF SINGLE AND MIXED α-OXO KETENE DITHIOACETALS FROM ACTIVE METHENYL PRECURSORS. Synthetic Communications, 2002, 32, 2369-2376.                                                                                                               | 2.1 | 8         |