David Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546232/publications.pdf

Version: 2024-02-01

66343 128289 9,978 60 42 60 citations h-index g-index papers 67 67 67 8428 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome. PLoS ONE, 2020, 15, e0228165.	2.5	12
2	Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications, 2018, 9, 585.	12.8	110
3	Multi 'omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Science of the Total Environment, 2018, 642, 742-753.	8.0	60
4	Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiology Ecology, 2018, 94, .	2.7	62
5	Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
6	Deterministic influences exceed dispersal effects on hydrologically onnected microbiomes. Environmental Microbiology, 2017, 19, 1552-1567.	3.8	143
7	Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments. Journal of Hydrology, 2017, 555, 278-287.	5.4	18
8	Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies. Scientific Reports, 2017, 7, 12006.	3. 3	40
9	Biogeochemical cycling at the aquatic–terrestrial interface is linked to parafluvial hyporheic zone inundation history. Biogeosciences, 2017, 14, 4229-4241.	3.3	25
10	Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3188-3205.	3.0	58
11	Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism. Frontiers in Microbiology, 2016, 7, 1949.	3.5	87
12	Coupling among Microbial Communities, Biogeochemistry and Mineralogy across Biogeochemical Facies. Scientific Reports, 2016, 6, 30553.	3.3	26
13	Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications, 2016, 7, 11237.	12.8	290
14	Nitrate bioreduction in redox-variable low permeability sediments. Science of the Total Environment, 2016, 539, 185-195.	8.0	32
15	Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer. Microbiology (United Kingdom), 2014, 160, 362-372.	1.8	10
16	A transâ€outer membrane porinâ€cytochrome protein complex for extracellular electron transfer by <scp><i>G</i></scp> <i>eobacter sulfurreducens</i> àê <scp>PCA</scp> . Environmental Microbiology Reports, 2014, 6, 776-785.	2.4	178
17	Quantifying community assembly processes and identifying features that impose them. ISME Journal, 2013, 7, 2069-2079.	9.8	1,354
18	Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments. Frontiers in Microbiology, 2013, 4, 388.	3.5	38

#	Article	IF	CITATIONS
19	Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment. Applied and Environmental Microbiology, 2012, 78, 759-767.	3.1	46
20	Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. Environmental Science & Environmental Science	10.0	34
21	Redox Reactions of Reduced Flavin Mononucleotide (FMN), Riboflavin (RBF), and Anthraquinone-2,6-disulfonate (AQDS) with Ferrihydrite and Lepidocrocite. Environmental Science & Technology, 2012, 46, 11644-11652.	10.0	98
22	Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. Frontiers in Microbiology, 2012, 3, 37.	3.5	186
23	Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environmental Microbiology, 2012, 14, 414-425.	3.8	100
24	Competitive Reduction of Pertechnetate (⁹⁹ TcO ₄ ^{â^'}) by Dissimilatory Metal Reducing Bacteria and Biogenic Fe(II). Environmental Science & Echnology, 2011, 45, 951-957.	10.0	48
25	Contribution of Extracellular Polymeric Substances from <i>Shewanella</i> sp. HRCR-1 Biofilms to U(VI) Immobilization. Environmental Science & Environ	10.0	149
26	Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction. Environmental Microbiology, 2011, 13, 3275-3288.	3.8	39
27	Identification and Characterization of UndA _{HRCR-6} , an Outer Membrane Endecaheme <i>c</i> >-Type Cytochrome of Shewanella sp. Strain HRCR-6. Applied and Environmental Microbiology, 2011, 77, 5521-5523.	3.1	32
28	Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 2011, 77, 4035-4041.	3.1	140
29	Impacts of <i>Shewanella oneidensis c</i> >â€type cytochromes on aerobic and anaerobic respiration. Microbial Biotechnology, 2010, 3, 455-466.	4.2	91
30	Role of outerâ€membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by <i>Shewanella oneidensis</i> MRâ€1. Geobiology, 2010, 8, 56-68.	2.4	91
31	Electron donorâ€dependent radionuclide reduction and nanoparticle formation by <i>Anaeromyxobacter dehalogenans</i> strain 2CPâ€C. Environmental Microbiology, 2009, 11, 534-543.	3.8	49
32	Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochimica Et Cosmochimica Acta, 2009, 73, 962-976.	3.9	216
33	Oxidative dissolution potential of biogenic and abiogenic TcO2 in subsurface sediments. Geochimica Et Cosmochimica Acta, 2009, 73, 2299-2313.	3.9	54
34	Structural Similarities between Biogenic Uraninites Produced by Phylogenetically and Metabolically Diverse Bacteria. Environmental Science & Environme	10.0	50
35	Hydrogenase―and outer membrane <i>c</i> àâ€ŧype cytochromeâ€facilitated reduction of technetium(VII) by <i>Shewanella oneidensis</i> MRâ€1. Environmental Microbiology, 2008, 10, 125-136.	3.8	74
36	The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression. Archives of Microbiology, 2008, 189, 313-324.	2.2	21

#	Article	IF	CITATIONS
37	Direct Involvement of Type II Secretion System in Extracellular Translocation of <i>Shewanella oneidensis</i> Outer Membrane Cytochromes MtrC and OmcA. Journal of Bacteriology, 2008, 190, 5512-5516.	2.2	113
38	Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4. Applied and Environmental Microbiology, 2006, 72, 3236-3244.	3.1	132
39	Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11358-11363.	7.1	1,629
40	Reductive biotransformation of Fe in shale–limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochimica Et Cosmochimica Acta, 2006, 70, 3662-3676.	3.9	67
41	c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis. PLoS Biology, 2006, 4, e268.	5.6	310
42	Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c -Type Cytochromes of Shewanella oneidensis MR-1. Journal of Bacteriology, 2006, 188, 4705-4714.	2.2	227
43	CaUO2CO3 Complexation Implications for Bioremediation of UVI. Physica Scripta, 2005, , 915.	2.5	15
44	The Role of Bacterial Exopolymers in Metal Sorption and Reduction. Microscopy and Microanalysis, $2005, 11, \ldots$	0.4	12
45	Ferrous hydroxy carbonate is a stable transformation product of biogenic magnetite. American Mineralogist, 2005, 90, 510-515.	1.9	7 5
46	Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State. Applied and Environmental Microbiology, 2004, 70, 4230-4241.	3.1	247
47	Reduction of TcO4â^ by sediment-associated biogenic Fe(II). Geochimica Et Cosmochimica Acta, 2004, 68, 3171-3187.	3.9	184
48	Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III)-reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochimica Et Cosmochimica Acta, 2004, 68, 2799-2814.	3.9	164
49	Microbial Reduction of Structural Fe(III) in Illite and Goethite. Environmental Science & Emp; Technology, 2003, 37, 1268-1276.	10.0	128
50	Inhibition of Bacterial U(VI) Reduction by Calcium. Environmental Science & Eamp; Technology, 2003, 37, 1850-1858.	10.0	254
51	Modeling the Inhibition of the Bacterial Reduction of U(VI) by \hat{I}^2 -MnO2(s). Environmental Science & Technology, 2002, 36, 1452-1459.	10.0	67
52	Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochimica Et Cosmochimica Acta, 2002, 66, 3247-3262.	3.9	170
53	TEM Approach in Investigations of Microbially Assisted Uranium Reduction. Microscopy and Microanalysis, 2002, 8, 750-751.	0.4	0
54	Biogenic Mineral Formation by Iron Reducing Bacteria. Microscopy and Microanalysis, 2001, 7, 756-757.	0.4	3

#	Article	lF	CITATION
55	Dechlorination of Carbon Tetrachloride by Fe(II) Associated with Goethite. Environmental Science & Env	10.0	296
56	Mineral transformations associated with the microbial reduction of magnetite. Chemical Geology, 2000, 169, 299-318.	3.3	180
57	Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochimica Et Cosmochimica Acta, 2000, 64, 3085-3098.	3.9	309
58	Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a <i>Thermus</i> Isolate. Applied and Environmental Microbiology, 1999, 65, 1214-1221.	3.1	260
59	Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica Et Cosmochimica Acta, 1998, 62, 3239-3257.	3.9	712
60	Bacterial reduction of crystalline Fe (super 3+) oxides in single phase suspensions and subsurface materials. American Mineralogist, 1998, 83, 1426-1443.	1.9	324